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THERMOPHYSICAL PROPERTIES MEASUREMENTS AND MODELS FOR ROCKET 
PROPELLANT RP-1: PHASE I 

 
 

Joseph W. Magee, Thomas J. Bruno, Daniel G. Friend, Marcia L. Huber, Arno Laesecke, 
Eric W. Lemmon, Mark O. McLinden, Richard A. Perkins, Jörg Baranski, and Jason A. Widegren 

Physical and Chemical Properties Division 
Chemical Science and Technology Laboratory 
National Institute of Standards and Technology 

Boulder, Colorado 80305-3328 
 
 

Accurate knowledge of thermophysical properties is a prerequisite to the design of 
efficient and cost-effective rocket engine systems that use the kerosene rocket 
propellant designated RP-1. A robust properties model that is based on reliable 
experimental measurements is the best means to provide this information to 
designers. Thus, a combined experimental and modeling study was carried out to 
elucidate the behavior of key properties over wide ranges of temperature and 
pressure. As a first step in this study, an RP-1 sample provided by the U.S. Air 
Force Research Lab (Wright-Patterson AFB, OH) was chemically characterized, 
which established that this sample had anomalously high concentrations of 
unsaturated compounds. Then, thermophysical properties were measured for this 
sample. Those experimental results were used to develop a mixture model based on 
a representative surrogate mixture. The results of this study were presented for 
review and comments during a December 11, 2003 workshop attended by 
representatives of NASA, U.S. Air Force, and their contractors. 
 
Key words: chemical characterization; density; heat capacity; Helmholtz energy; 
hydrocarbons; mixture model; rocket propellant RP-1; surrogate mixture; thermal 
conductivity; viscosity  
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1. Introduction 

1.1 Objective 

Among the long-range objectives of research in thermophysical properties at the National 

Institute of Standards and Technology (NIST) is the development of accurate predictive methods 

for calculating the properties of gaseous and liquid mixtures of hydrocarbons. The underlying 

models may play a key role in design of equipment that is used in the transportation and energy 

sectors and for optimization of materials and energy usage. The ongoing development and testing 

of these models relies heavily on benchmark experimental measurements. The purpose of this 

report is to provide design engineers, data analysts, and experimentalists with a compilation of 

recent studies of the thermophysical properties for rocket propellant RP-1, a real fuel that is a 

complex hydrocarbon mixture. It is a well established fact that thermophysical properties of a 

complex mixture can vary considerably with composition. This report is denoted as Phase I since it 

covers thermophysical properties of the first sample of this real fuel that was furnished to NIST, 

with an expectation that studies of other samples would follow in Phases II, III, etc., until NIST 

had developed a robust compositionally variable model that was based on the measurements. The 

studies were carried out, during calendar year 2003, by the staff of the Experimental Properties of 

Fluids Group, the Theory and Modeling of Fluids Group, and the Properties for Process 

Separations Project, all of which are units of the Physical and Chemical Properties Division of the 

Chemical Science and Technology Laboratory (CSTL) of NIST. We begin with a report of the 

modeling effort because, while the model was the end product, its discussion provides a 

framework for the rest of the work. Following the models section, we present details of the 

underlying experimental measurements of chemical character, density, heat capacity, thermal 

conductivity and viscosity. 

1.2 Scope 
 

Knowledge of thermophysical properties is essential when a detailed analysis of the design 
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and performance of a rocket propulsion system is needed. Both thermodynamic and transport 

properties are required. The present work stemmed from NASA’s expressed need for accurate 

thermophysical properties that cover wide ranges of temperature and pressure. This property 

information is needed for a rational design of highly reliable reusable rocket engines for future 

launch vehicles in which the fuels are expected to encounter higher pressures and temperatures 

than in those previous designs. NASA’s sensitivity study had concluded that property uncertainties 

accounted for 70 % of the uncertainty in a portion of the propulsion system design. NASA had also 

noted that, prior to this project, experimental data covered only limited ranges of conditions and, 

furthermore, the differences in RP-1 properties from different sources amounted to as much as 

60 %. 

To meet NASA’s needs and expand knowledge in the field of kerosene-based fuels, a 

comprehensive program was planned and carried out. This program had both measurement and 

modeling components. Those results are the subject of this report. 

1.3 Organization 

This report is arranged in nine sections and begins with a discussion of property models. 

The modeling results are followed by those of measured thermophysical properties: chemical 

characterization, density, heat capacity, thermal conductivity, and viscosity. The experimental 

measurements are presented in tables and graphs. The report concludes with a discussion of a 

NIST workshop, some impacts of this research program, and recommendations for further studies. 

Section 10 following this report lists references, Appendix A details procedures for chemical 

analyses, and Appendix B reports computational results for the compounds in a surrogate fuel 

mixture. 
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2. Property Modeling 

 
Since RP-1 is a complex mixture of several hundred components, modeling its properties 

using equations for the constituents of the mixture is not a practical solution. An alternative 

approach is to model the fuel as a surrogate mixture of between 10 and 20 components that can 

represent the thermodynamic and transport properties of the actual RP-1 fluid. Both 

thermodynamic properties (such as density, heat capacity, and normal boiling point) and transport 

properties (including thermal conductivity and viscosity) may be used in model development. 

The first step in the modeling process was a chemical analysis (see Section 3) of a specific 

RP-1 fuel sample provided by the Fuels Branch of the Air Force Research Lab, Wright-Patterson 

AFB, OH. The analysis used a gas-chromatography mass/ spectrometry method and provided 37 

constituent fluids. A detailed analysis shortened this list to 20 potential constituent fluids for a 

surrogate mixture. The lightest component identified was neohexane, and the heaviest was 

hexadecane. The list included linear and branched alkanes, mono and bicyclic paraffins, aromatics, 

and linear and branched olefins. For each of these fluids, we searched the open literature as well as 

databases such as TRC-SOURCE, DIPPR, Landolt-Bornstein, and NIST in-house databases for 

experimental physical property data. A bibliography of the results of these searches was 

constructed and is given in Table 1. In addition, we used predictive methods when data were not 

available. 

In order to model the thermodynamic properties of these fluids, an equation of state of 

some form was required.  Because of the very limited amount of data available, a generalized 

method was selected to describe the attributes of the fluids. A short form of a Helmholtz energy 

equation of state was used as a starting point. The equation is expressed with reducing variables, 

with the critical temperature and critical density of the fluid as the primary reducing properties. 
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The equation has 12 terms, and the coefficients of the equation are functions of the acentric factor. 

Experimental data for the normal alkanes from butane through hexatriacontane (C36) were fitted 

to determine the coefficients of the equation (48 in all, since each coefficient uses 4 parameters 

that are functions of the acentric factor). The experimental data included densities, vapor pressures, 

heat capacities, and sound speeds. Comparisons were made against data for both the normal 

alkanes as well as branched alkanes (which were not fitted) to determine that the final equation 

could successfully be applied to these hydrocarbons. 

The generalized equation was then used to make equations for each of the 20 fluids in the 

surrogate. Only the critical temperature, critical density, and acentric factor are required to set up 

an equation for each component. The critical temperatures were taken from the literature or 

estimated from prediction schemes. The critical density and acentric factor were fitted using 

experimental vapor pressures at the boiling point and saturated liquid densities near atmospheric 

conditions. For fluids with additional data at other state points, the values of the critical density and 

acentric factor could be more closely tuned to achieve lower overall uncertainties. Viscosity and 

thermal conductivity surfaces for each of the constituent fluids were developed from experimental 

data, predictive methods, and an extended corresponding states model from sources summarized 

in Table 1. 

The next step was to select a method for representing the properties of the RP-1 mixture. 

For the thermodynamic properties, we selected an excess Helmholtz energy mixture model used 

successfully at NIST for the representation of properties of natural gas and refrigerant mixtures 

[1,2]. The model uses the pure fluid equations of state with ideal mixing to account for most of the 

mixture properties. To account for the additional interaction between unlike molecules, an excess 

contribution can be used to account for the remainder of the mixture properties. However, 
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experimental information for each binary system in the mixture is needed to determine the excess 

contribution. Since experimental data are not available, the excess part was set to zero. There are 

two additional parameters in the mixture model that can be adjusted to achieve better results. A 

general scheme had been developed in previous work at NIST to predict one of these parameters 

for systems where no data are available. This scheme was used here to improve the mixture 

calculations. 

For transport properties, we use an extended corresponding states model [3,4]. In this 

approach, the properties of the mixture are represented in a two-step process that involves mapping 

onto a reference fluid. The reference fluid may be any well characterized fluid, but it is best to 

select a reference fluid that is chemically similar to the constituents of the mixture of interest. For 

this work, we chose n-dodecane as a reference fluid. Since it is important to have a very good 

representation of both the thermodynamic and transport properties of the reference fluid, as part of 

this project we developed a dedicated equation of state for n-dodecane and correlations for the 

viscosity and thermal conductivity. The results of this work are available as two publications in the 

journal Energy and Fuels [5,6]. The correlations for n-dodecane are valid over a wide range of 

fluid states, from the triple point to the onset of decomposition, and for pressures to 200 MPa. 

Uncertainties of properties calculated using the equation are 0.2 % in density at pressures up to 200 

MPa, 0.5 % at higher pressures (up to 500 MPa), 1 % in heat capacities, 0.5 % in sound speeds, and 

0.2 % in vapor pressures. The viscosity correlation has an estimated uncertainty of 0.5 % along the 

saturation boundary in the liquid phase, 3 % in the compressed liquid region, and 2 % in the vapor. 

The thermal conductivity has an estimated uncertainty of 3 % along the liquid saturation boundary 

and in the compressed liquid phase, and 5 % in the vapor region. 

The final step in the modeling procedure was to determine the compositions of the 
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constituent fluids that best represent the properties of the mixture. The properties that we selected 

for fitting were experimental densities, heat capacities, thermal conductivities, viscosities, and one 

boiling point that were measured as part of this work, described in separate sections of this report. 

Data at temperatures above 600 K were not used in the fitting process due to concerns about 

thermal decomposition during the measurements. A multi-property fitting routine was used to 

determine the compositions of the constituents of the surrogate mixture. The final mixture, 

summarized in Table 2, contains 14 constituent fluids, and represents the density to within 0.3 %, 

the heat capacity to within 7 %, the thermal conductivity to within 3 %, the viscosity to within 3 % 

at atmospheric pressures and 10 % at 60 MPa, and the boiling point at local atmospheric pressure 

to 0.5 %. It has an overall molar mass of 164.6, a hydrogen to carbon ratio (H/C) of 1.95, and an 

approximate chemical formula of C11.8 H23.0. The overall composition is (by mole %) 27.4 % 

alkanes, 26.6 % alkenes, 18.5 % monocyclic paraffins, 22.4 % bicyclic paraffins, and 5.1 % 

aromatics. This mixture is a surrogate; it is not the actual mixture composition, but rather a mixture 

that approximates the behavior of the RP-1 sample that was investigated. 
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Table 1.  Bibliography for property modeling. 
 
Fuel Decomposition Studies 
 
Author(s) Reference Topic 
Andresen et al. [7] Solids formation jet fuels 
Balster and Jones [8] Formation of insolubles in aviation fuels 
Batti [9] Thermal stability jet fuels 
Behar et al. [10] Thermal decomposition of dodecylbenzene 
Chin et al. [11] Thermal stability of four kerosine-type fuels 
Chin and Lefebvre [12] For characterizing the thermal oxidative tendencies of 

aviation fuels 
Chin and Lefebvre [13] Thermal stability characteristics of kerosine-type fuels 
Chin and Lefebvre [14] Thermal stability characteristics of hydrocarbon fuels 
Edwards and 
Zabarnick 

[15] Surface deposition (fouling) of jet fuels 

Giovanetti et al. [16] Thermal stability and heat-transfer characteristics of several 
hydrocarbon fuels 

Goel and Boehman [17] Jet fuel degradation in flow reactors 
Grinstead and 
Zabarnick 

[18] Oxidn. and deposition data for jet fuels 

Han-Ying [19] Thermal stability of kerosene 
Heneghan et al. [20] Jet fuel thermal stability 
Heneghan and 
Harrison 

[21] development of an improved JP-8 

Hines [22] Heat transfer to RP-1 kerosine 
Kendall and Mills [23] Thermal stability of aviation kerosines 
Lai and Song [24] Pyrolization of cyclohexane and seven n-alkylcyclohexanes
Liang et al. [25] Heat transfer characteristics of methane, propane, kerosene, 

aerokerosene and rocket kerosene 
Ma [26] Thermal stability of kerosine 
Marteney and 
Spadaccini 

[27] Thermal stability of jet fuels 

Pande and Hardy [28] Soluble copper and stability 
Roback et al. [29] Deposit formation in hydrocarbon fuels 
Savage et al. [30] Review of fundamental studies and applications of reactions 

at supercritical conditions 
Stekhun [31] Effect of hydrofining on thermal stability of jet fuels 
Stewart et al. [32] Supercritical pyrolysis of decalin, tetralin, n-decane 
Stiegemeier [33] Thermal Stability and Heat Transfer Investigation of Five 

Hydrocarbon Fuels 
Wang [34] Thermophysics characterization of kerosene combustion 
Watkinson and 
Wilson 

[35] Review of fouling of organic fluids 

Wohlwend et al. [36] Thermal stability of RP-1, JP-10, and quadricyclane 
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Author(s) Reference Topic 
Yu and Eser [37] Critical points of jet fuels 
Yu and Eser [38] Thermal decomposition C10-C14 normal alkanes 
Yu and Eser [39] Kinetics of thermal decomposition  of C10-C14 normal 

alkanes 
Yu and Eser [40] n-butylbenzene and n-butylcyclohexane 
Yu and Eser [41] Thermal decomposition of decalin, tetralin 
Yu and Eser [42] Thermal decomposition of binary mixtures of jet fuel model 

compounds 
Volokhova and 
Zhorov 

[43] Pyrolysis of Russian kerosene 

 
 
Surrogate Models 
 
Author(s) Reference Topic 
Edwards and Maurice [44] JP-4, JP-8, JP-5, RP-1 surrogates 
Edwards [45] Surrogates, general petroleum distillate fuels 
Farmer et al. [46] RP-1 surrogate 
Patterson et al. [47] Kerosene surrogate 
Violi et al. [48] JP-8 surrogate 
Wang [49] Kerosene/RP-1 surrogate 
Wood et al. [50] JP-4 surrogate 
 

 
RP-1/kerosene Properties 
 
Author(s) Reference Topic 
Alexander et al. [51] Index of refraction 
Blake and Sheard [52] Dielectric constant, kerosene 
Chao [53] Isothermal compressibility 
CPIA/M4 [54] Properties of RP-1 including vapor pressure, density, 

viscosity, boiling point, fractional distillation curve, specific 
heat, thermal conductivity, composition 

Dubovkin et al. [55] Vapor pressure, critical parameters Russian fuels 
Kopylov [56] Viscosity, Russian T-1 kerosene 
Kozyokov [57] Thermal conductivity, Russian T-1 kerosene 
Liang et al. [25] Heat transfer characteristics of kerosene 
Mehta et al. [58] Specific Gravity, viscosity, boiling point, chemical analysis 

of Russian kerosene 
Piatibratov [59] Density, Russian T-1 kerosene 
Sharma et al. [60] Correlation for flash point of kerosene 
Sokolov and Tarlakov  [61] Heat capacity, Russian T-1 kerosene 
Sokolov and Tarlakov  [62] Vapor pressure, Russian T-1 kerosene 
Stiegemeier [63] RP-1, JP-7, JP-8, JP-8+100, JP-10 thermal stability 
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Author(s) Reference Topic 
Vinogradov [64] Density, sound speed, viscosity of kerosene 
Volyak [65] Surface tension, Russian T-1 kerosene 
Wohlwend et al. [36] Thermal stability measurements RP-1, JP-10, quadricyclane 
Wucherer and Wilson [66] Density, thermal conductivity 
Zaytseva [67] Thermal conductivity, Russian T-1 kerosene 
  

 
Estimation methods 
 
Author(s) Reference Topic 
American Petroleum 
Institute 

[68] viscosity, thermal conductivity 

Baroncini et al. [69] Thermal conductivity 
Chung et al. [70] Lennard-Jones parameters, viscosity, thermal conductivity 
Constantinou and 
Gani 

[71] Critical point, boiling point 

Deppmeier et al. [72] Dipole moment, radius of gyration 
Ely and Hanley [73,74] Viscosity, thermal conductivity 
Horvath [75] Critical point, boiling point, melting point, heat capacity, 

thermal conducitivty, viscosity 
Joback [76] Critical point, boiling point, melting point 
Marrero [77] Critical point, boiling point 
Poling et al. [78] Critical point, boiling point, melting point, heat capacity, 

thermal conducitivy, viscosity 
Quayle [79] Parachors 
Rihani and 
Doraiswamy 

[80] Heat capacity 

Stein and Brown [81] Heat capacity 
Wilson and Jasperson [82] Critical point, boiling point 
Yan et al. [83] Critical point 
 

 
Potential Components in the Surrogate Model 

 
Cyclododecane  

 
Author(s) Reference Topic 
Coops et al. [84] Melting point 
Drotloff and Moller [85] Melting point 
Fischer and Weiss [86] Viscosity, density, melting point, boiling point, self-diffusion 

coefficient 
Gollis et al. [87] Viscosity 
Ladygin et al [88] Viscosity 
Matteoli et al. [89] Density 
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Author(s) Reference Topic 
Meyer and Hotz [90] Density, vapor pressure 
Mueller et al [91] Melting point 
Ruzicka et al. [92] Density 

 
 

Methylcyclododecane 
 
 

Estimated properties 
 

Cyclodecene 
 

Author(s) Reference Topic 
Allinger [93] Boiling point 
Blomquist et al. [94] Density, boiling point 
Cope et al. [95] Boiling point 
Prelog et al. [96] Boiling point 

 
 
2,10-dimethylundecane 

 
Author(s) Reference Topic 
Gibbons [97] boiling point  

 
  
  
2,7,10-trimethyldodecane 
Estimated values 
 
3-methylundecane 
 
Author(s) Reference Topic 
Levene and Harris [98] Density, boiling point 
Mann et al. [99] Density 
Marsh et al. [100] Heat capacity 
Petrov et al. [101] Melting point, density, boiling point 
Prout et al. [102] Boiling point 
Smith [103] Boiling point 
Terres et al. [104] Melting point 
 

 
2,9-dimethyldecane 

 
Author(s) Reference Topic 
Calingaert and Soroos [105] Density, boiling point 
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Author(s) Reference Topic 
Calingaert and Soroos [106] Density 
Dyke and Jones [107] Boiling point 
Eykman [108] Density 
Geist and Cannon [109] Density, viscosity 
Mears et al. [110] Density, boiling point, melting point 
Moore et al. [111] Density 
Parks et al. [112] Triple point, melting point 
 

 
2-methylnonane 

 
Author(s) Reference Topic 
Calingaert and 
Hladky 

[113] Density 

Calingaert and Soroos [105] Boiling point, density 
Eykman [108] Density 
Geist and Cannon [109] Viscosity, density 
Marsh et al. [100] Heat capacity 
Mears et al. [110] Boiling point, freezing point 
Moore et al [111] Density 
Parks et al. [112] Triple point 
 

 
3-methyldecane 
 
Author(s) Reference Topic 
Marsh et al. [100] Heat capacity 
 
  
3-ethyl-4,4-dimethyl-2-pentene 

 
Author(s) Reference Topic 
Howard et al. [114] Density, boiling point 
 
 
4-methyl-4-undecene 
Estimated values 
 
2-methylnaphthalene 
 
Author(s) Reference Topic 
Ambrose [115] Critical temperature 
Briggs [116] Thermal conductivity 
Byers and Williams [117] Viscosity 
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Author(s) Reference Topic 
Camin and Rossini [118] Vapor pressure 
Coulson [119] Boiling point 
Cullinane and Chard [120] Freezing point 
Cumper et al. [121] Freezing point 
Evans [122] Viscosity, density 
Glaser and Ruland [123] Vapor pressure 
Grodde [124] Density 
Grosse and Ipatieff [125] Boiling point 
Hales and Townsend [126] Density 
Huffman et al. [127] Triple point 
Koelbel [128] Viscosity, boiling point 
Larsen et al. [129] Freezing point 
Luther and Wachter [130] Boiling point 
Mair and Streiff [131] Density, boiling point, melting point 
Marsh et al. [100] Heat capacity 
Neuhaus [132] Density 
Parks and Huffman [133] Freezing point 
Rampolla and Smyth [134] Viscosity, density, freezing point 
Salceanu [135] Density 
Schiessler [136] Viscosity 
Shreve and Lux [137] Density 
Sirotenko, A.A. [138] Viscosity 
Skvarchenko et al. [139] Boiling point, freezing point 
Smyth [140] Viscosity 
Streiff et al. [141] Freezing point 
Szafranski [142] Freezing point 
Von Auwers and 
Fruhling 

[143] Density 

Wieczorek and 
Kobayashi 

[144] Vapor pressure 

Yokoyama et al. [145,146] Viscosity 
 
  
  
  

 
Decahydro-2-methylnaphthalene 

 
Author(s) Reference Topic 
Adkins and Davis [147] boiling point 
Gollis et al. [87] viscosity, thermal conductivity 
Gudzinowicz et al. [148] density, viscosity 
Weissenberger et al. [149] boiling point, density  
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Heptylcyclohexane 

 
Author(s) Reference Topic 
Baylaucq et al. [150] viscosity, density 
Luther [151] density 
Marsh et al. [100] heat capacity 
Mokbel et al. [152] vapor pressure 
Schlenk [153] boiling point 
Schmidt [154] freezing point 
Schmidt and Grosser [155] boiling point, viscosity 

 
 

Cis-decahydronaphthalene 
 

Author(s) Reference Topic 
Allinger and Coke [156] boiling point 
Bird and Daly [157] viscosity  
Boord et al. [158] freezing point, boiling point, density 
Briggs [116] thermal conductivity 
Camin and Rossini [118] density, vapor pressure, surface tension 
Cheng et al. [159] boiling point, critical temperature 
Chylinksi and Stryjek [160] density 
Cooper et al. [161] boiling point 
Daubin et al. [162] boiling point, density 
Fenske et al. [164] density, vapor pressure 
Fischer and Weiss [86] viscosity 
Foehr and Fenske [165] boiling point, density 
Frezzotti et al. [166] thermal conductivity 
Glaser and Ruland [123] critical pressure, critical temperature 
Gudzinowicz et al. [167] density, thermal conductivity 
Guenthard et al. [168] density 
Hibbit and Linstead [169] boiling point, density 
Hogenboom et al. [170] viscosity, freezing point, density 
Huckel [171] boiling point, freezing point, density 
Huckel [172] density 
Huckel et al [173] density 
Ipatieff and Pines [174] boiling point 
Jasper [175] surface tension 
Korosi and Kovats [176] density, surface tension 
Kuss [177] density 
Lauer and King [178] density 
Lozovoi et al. [179]  density 
Lyusternik and Zhdanov [180] viscosity 
Marsh et al. [100] heat capacity 
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Author(s) Reference Topic 
McCullough et al. [181] triple point 
Nuzzi [182] viscosity 
Pak and Kay [183] critical pressure, critical temperature 
Parks and Hatton [184] freezing point 
Parthasarathy [185] density 
Petrov [186] freezing point 
Polenske and Eisenlohr [163] boiling point, density 
Prokopetz [187] boiling point, density 
Rank et al. [188] boiling point 
Ruzicka et al. [189] boiling point, density 
Schiessler et al. [190] viscosity 
Seyer and Barrow [191] freezing point, density 
Seyer and Leslie [192] viscosity, freezing point 
Seyer and Mann [193] freezing point, boiling point, vapor pressure 
Seyer and Walker [194] density, surface tension 
Shiohama et al [195] density 
Shiohama et al [196] density 
Sohda et al. [197] vapor pressure, surface tension 
Stokkum [198] viscosity 
Streiff et al. [199] freezing point 
Timmermans [200] freezing point 
Zeberg-Mikkelsen et al. [201] viscosity, density 
Zelinskii [202] density 

 
  
1- dodecene 
 
Author(s) Reference Topic 
Asinger [203] density, boiling point 
Baumgarten [204] boiling point 
Boord et al. [205] density, boiling point, freezing point 
Engler and Hofer [206] density 
Evans [122] density, viscosity, boiling point 
Forziati et al. [207] density, vapor pressure, boiling point 
Geldof and Wibaut [208] boiling point 
Gude et al. [209] critical pressure, critical temperature 
Hunig and Kiesel   [210] boiling point 
Jasper [175] surface tension 
Jasper and Kerr [211] surface tension 
Jasper and Kring [212] surface tension 
Jeffery and Vogel [213] density, boiling point 
Krafft [214] density, boiling point 
Krassilchik [215] density 
Labarre [216] density, boiling point 
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Author(s) Reference Topic 
Lenneman et al. [217] boiling point 
Luther [151] density 
Lyusternik and Zhdanov [180] viscosity 
Maman [218] density 
Marsh et al. [100] heat capacity 
McCullough et al. [219] triple point 
Mukhamedzyanov and 
Usmanov 

[220] thermal conductivity 

Petrov et al. [221] density, boiling point 
Schiessler [136] viscosity 
Schiessler et al. [190] viscosity 
Schmidt [154] density, freezing point 
Schmidt et al. [222] density, boiling point, freezing point, viscosity 
Streiff et al. [199] freezing point 
Tilicheev et al. [223] density, boiling point 
Urry et al. [224] boiling point 
Wibaut and Geldof [225] density 
Zafiriadis and Mastagli [226] boiling point 
 
  
1-tridecene 
 
Author(s) Reference Topic 
Camin and Rossini [118] density, vapor pressure 
Jasper [175] surface tension 
Kozacik and Reid [227] density 
Lagemann et al. [228] density 
Luther [151] density 
Marsh et al. [100] heat capacity 
Petrov et al. [221] density, boiling point 
Pictet and Potok [229] density, boiling point 
Scheissler [230] density 
Schiessler [136] viscosity 
Schiessler et al. [190] viscosity, density 
Schmidt [154] density, freezing point 
Schmidt et al. [222] density, freezing point, viscosity 
Streiff et al. [141] freezing point 
Tilicheev et al. [223] density, boiling point 
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2,2-dimethylbutane 
 

Author(s) Reference Topic 
Ambrose et al [231] critical temperature 
Aucejo et al. [232] density, viscosity 
Avery and Ellis [233] boiling point 
Bazhulin et al. [234] density, boiling point 
Bishop et al. [235] density, boiling point 
Boord [236] boiling point 
Brame and Hunter [237] density, boiling point 
Brazier and Freeman [238] viscosity, density 
Brewster et al. [239] boiling point 
Brooks et al. [240] density, boiling point, freezing point 
Chavanne and van 
Risseghem 

[241] density, boiling point, viscosity 

Chavanne [242] density, boiling point 
Chen and Zwolinski [243] density, vapor pressure 
Compostizo et al. [244] density 
Cramer and Mulligan [245] density, boiling point 
Denyer et al. [246] density, boiling point, freezing point 
Derfer et al. [247] density, boiling point 
Desty and Whyman [248] boiling point 
Dixon [249] density 
Douslin and Huffman [250] triple point 
Eicher and Zwolinski [251] viscosity 
Felsing and Watson [252] density, boiling point 
Fenske et al. [253] boiling point 
Finke et al. [254] freezing point 
Fischer [255] melting point 
Foehr and Fenske [165] density, boiling point 
Fomin and Sochanski [256] density 
Forziati [257] density, boiling point, freezing point 
Forziati et al. [258] density 
Funk et al. [259] vapor pressure 
Genco et al. [260] critical volume, critical temperature, critical pressure 
Glasgow and Rossini [261] freezing point 
Glasgow et al. [262] freezing point 
Griskey and Canjar [263] vapor pressure 
Griswold et al. [264] boiling point 
Grummit et al. [265] density, boiling point 
Haensel and Ipatieff [266] boiling point 
Hickman [267] boiling point 
Hicks-Brunn et al. [268] density, triple point, boiling point 
Hoog et al. [269] density, boiling point 
Howard et al. [114] density, boiling point, freezing point 
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Author(s) Reference Topic 
Jasper [175] surface tension 
Kay [270] vapor pressure, density, critical density, critical 

temperature, boiling point 
Kay and Young [271] critical temperature, critical pressure 
Kilpatrick and Pitzer [272] vapor pressure, triple point 
Kimura and Benson [273, 274, 

275]
density 

Kishner [276] density, boiling point 
Kuss and Pollmann [277] viscosity 
Lambert et al. [278] viscosity 
Liberman et al. [279] density, boiling point 
Lichtenfels et al. [280] boiling point 
Maman [281, 282] density, boiling point 
Mann et al. [99] density 
Marker and Oakwood [283] density, boiling point 
Markownikov [284] density, boiling point 
Marsh et al. [100] heat capacity 
McArdle and Robertson [285] density, boiling point 
Moldavskii and 
Nizovkina 

[286] density 

Nicolini and Laffitte [287] density, vapor pressure 
Noller [288] density, boiling point 
Oberfell and Frey [289] density, boiling point, freezing point 
Paz Andrade [290] density 
Pichler et al. [291] density, boiling point 
Rank et al. [188] boiling point 
Rodger et al. [292] density 
Sakiadis and Coates [293] thermal conductivity 
Sayegh and Ratcliff [294] vapor pressure 
Schmerling et al. [295] density, boiling point 
Serijan et al. [296] density 
Seubold [297] boiling point 
Shen and Williamson [298] density 
Smittenberg at al. [299] triple point, boiling point 
Smutny and Bondi [300] viscosity 
Stull [301] vapor pressure, boiling point, freezing point 
Timmermans [302] boiling point, freezing point 
Tooke and Aston [303] freezing point 
Treszczanowicz et al. [304] density 
Van Risseghem [305] density, freezing point 
Van Wijk and Versteeg [306] density, viscosity 
Vilim [307] thermal conductivity 
Waddington and Douslin [308] density 
Westerdijk et al. [309] density, boiling point 
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Author(s) Reference Topic 
Wibaut and Gitsels [310] boiling point 
Wibaut et al. [311] density, boiling point, freezing point 
Willingham et al. [312] vapor pressure, boiling point 
Wojciechowski [313] boiling point, freezing point 
Young [314] critical temperature, critical pressure 
Zhang et al. [315] density 

 
  
n-hexadecane 
 
Author(s) Reference Topic 
Ait-Kaci and Merlin [316] melting point 
Ambrose [115] critical temperature 
Aminabhavi and 
Gopalkrishma 

[317] density, viscosity 

Anselme et al. [318] critical temperature, critical density 
Aracil et al. [319, 320] density 
Aralaguppi et al. [321] viscosity, density 
Arenosa et al. [322] density 
Asfour et al. [323] density 
Assael et al. [324] thermal conductivity 
Aucejo et al. [232] viscosity 
Aucejo et al. [325] viscosity, density 
Awwad  et al. [326] viscosity 
Awwad and Allos [327] density 
Awwad and Pethwick [328] density 
Awwad and Salman [329, 330] density 
Awwad et al. [331] viscosity, density 
Awwad et al. [332, 333] density 
Banipal et al. [334] density 
Banos et al. [335] density 
Barber and English [336] boiling point, melting point, density 
Behrends and Kaatze [337] viscosity 
Benson and Handa [338] density 
Berger [339] boiling point 
Bhattacharyya et al. [340] density 
Boelhouwer [341] density 
Bogatov et al. [342] thermal conductivity 
Boord et al. [158] boiling point, melting point, density 
Bradley and Shellard [343] density 
Bridgman [344] vapor pressure 
Bronsted and Koefoed [345] density 
Calingaert et al. [346] density 
Camin et al [347] vapor pressure, density 
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Author(s) Reference Topic 
Carey and Smith [348] melting point 
Celda et al. [349] density 
Chang et al. [350] density 
Chawla et al. [351] density 
Chevalier et al. [352] viscosity, density 
Chylinski and Stryjek [353] viscosity 
Chylinski and Stryjek [160] density 
Cooper and Asfour [354] viscosity, density 
Coursey and Heric [355] viscosity, density 
Deanesly [356] density, melting point 
DeLorenzi et al. [357] density, viscosity 
Dernini et al. [358] density 
Diaz Pena and Menduina [359] density 
Diaz Pena and Nunez 
Delgado 

[360] density 

Diaz-Pena and Tardajos [361] density 
Dixon [249] density 
Drahowzal [362] melting point 
Ducooulombier et al. [363] viscosity 
Dymond and Harris [364] density 
Dymond and Young [365] viscosity, density 
Dymond et al. [366] viscosity, density 
Evans [122] viscosity, density 
Evans [367] melting point 
Fenby et al. [368] density 
Ferhat-Hamida and 
Philippe 

[369] density 

Fermeglia and Torriano [370] viscosity, density 
Findenegg [371] density, melting point 
Finke et al. [372] triple point 
Foehr and Fenske [165] density, melting point 
Fox et al. [373] surface tension 
Francis and Wood [374] boiling point, vapor pressure 
Gensler and Mahadevan [375] boiling point 
Glaser et al. [376] density 
Gollis et al. [87] thermal conductivity, melting point 
Gouel [377] viscosity, density 
Graaf et al. [378] density 
Granovskaya [379] vapor pressure 
Griot et al. [380, 381] density 
Grolier et al. [382] density 
Heric and Brewer [383] density, viscosity 
Heric and Brewer [384] density 
Heric and Coursey [385] density 
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Author(s) Reference Topic 
Holmes et al. [386] thermal conductivity 
Holzapfel et al. [387, 388, 

389]
density 

Ivanov et al. [390] boiling point 
Jasper [175] surface tension 
Jasper et al. [391] surface tension 
Kemula et al. [392] boiling point, melting point 
Klofutar et al. [393] density 
Korosi and Kovats [176] surface tension 
Krafft [394] melting point, boiling point, density 
Krafft [395] density, melting point 
Krafft [396] density, vapor pressure, melting point 
Lagerlof [397] boiling point 
Lainez and Rodrigo [398] density 
Lainez et al. [399] density 
Lal et al. [400] density, viscosity 
Langedijk and 
Smithuysen 

[401] density, melting point 

Larkin et al. [402] melting point 
Larsen et al. [129] boiling point, melting point 
Lauer and King [178] density 
Lee et al. [403] vapor pressure 
Lenoir and Hipkin [404] density 
Levene [405] boiling point 
Levene et al. [406] boiling point, melting point 
Lim and Williamson [407] density 
Luther [151] density 
Mabery [408] boiling point 
Mabery [409] boiling point, density 
Mansker et al. [410] density 
Marsh et al. [100] heat capacity 
Marsh and Organ [411] density 
Matsui and Arakawa [412] boiling point, melting point, density 
Matthews et al. [413] viscosity, density 
McKinney [414] boiling point 
McMakin and Van 
Winkle 

[415] density 

Messow et al. [416] density 
Mills and Fenton [417] vapor pressure 
Mogollon et al. [418] critical temperature 
Mukhamedzyanov et al. [419] thermal conductivity 
Mumford and Phillips [420] density, melting point, boiling point, viscosity 
Mustafaev [421] thermal conductivity 
Myers [422] vapor pressure 
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Author(s) Reference Topic 
Myers and Clever [423] surface tension, density 
Myers and Fenske [424] vapor pressure 
Nederbragt and 
Boelhouwer 

[425] viscosity 

Nhaesi and Asfour [426] density, viscosity 
Oddo [427] boiling point, melting point 
Orwoll and Flory [428] melting point 
Parks et al. [429] vapor pressure, triple point 
Perez et al. [430] vapor pressure 
Petrov [186] melting point 
Petrov and Kaplan [431] boiling point, density 
Philippe and Delmas [432] density 
Pilcher [433] triple point 
Plebanski et al. [434] density 
Powell and Groot [435] thermal conductivity 
Prophete [436] melting point 
Queimada et al. [437] density, viscosity 
Ralston et al. [438] melting point 
Rasskazov et al. [439] viscosity 
Rastorguev and Keramidi [440] viscosity 
Ratkovics et al. [441] viscosity 
Richardson and Parks [442] density 
Rolo et al. [443] surface tension 
Rosenthal and Teja [444] critical pressure, critical temperature 
Sakiadis and Coates [445] thermal conductivity 
Sanin and Melent’eva [446] viscosity 
Schiessler [136] viscosity 
Schiessler et al. [190] vapor pressure, density 
Schiessler [230] melting point 
Seyer et al. [447] density 
Shen and Williamson [298] density 
Smith [448] melting point 
Smith et al. [449, 450] critical temperature 
Snow et al. [451] melting point 
Snyder and Winnick [452] density 
Sondheimer and Amiel [453] boiling point, melting point 
Sorabji [454] boiling point, melting point 
Streiff et al. [141] melting point 
Suehnel et al. [455] density 
Tanaka et al. [456] viscosity, density 
Tardajos et al. [457, 458] density 
Tarzimanov and 
Mashirov 

[459] thermal conductivity 

Teja and Rice [460] density 
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Author(s) Reference Topic 
Teja et al. [461] critical temperature 
Terhoff [462] density 
Tilicheev and 
Kachmarchik 

[463] melting point, density 

Tilicheev and 
Kachmarchik 

[464] density 

Tilicheev et al. [465] boiling point, melting point, density 
Trejo [466] density 
Treszczanowicz et al. [467] density 
Treszczanowicz et al. [468] density 
Tuot and Guyard [469] boiling point, density 
Ubbelohde [470] vapor pressure, melting point 
Van Hook and Silver [471] density, melting point 
Vavanellos et al. [472] viscosity 
Vogel [473] boiling point, melting point, density 
Wada et al. [474] thermal conductivity 
Wakefield [475] viscosity, density 
Wakefield and Marsh [476] viscosity, density 
Wang et al. [477] density 
Waterman et al. [478] boiling point, melting point, density 
Whitmore et al. [479] viscosity 
Wibaut et al. [311] density 
Wilhelm et al. [480, 481] density 
Witek et al. [482] density 
Wu et al. [483] viscosity 
Young [484] boiling point, vapor pressure 
Zeinalov and Leikakh [485] density 
Ziegler et al. [486] boiling point, melting point 
  
  
n-dodecane 
 
Author(s) Reference Topic 
Aicart et al. [487] density 
Allemand et al. [488, 489] vapor pressure 
Ambrose and Townsend [490] critical pressure 
Ambrose et al. [231] critical temperature 
Aminabhavi and Banerjee [491] viscosity 
Aminabhavi and 
Gopalkrishma 

[317] viscosity, density 

Aminabhavi and Patil [492] viscosity, density 
Anselme et al. [318] critical density, critical temperature 
Aralaguppi et al. [321 493] viscosity, density 
Arenosa et al. [322] density 
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Author(s) Reference Topic 
Asfour et al. [323] density 
Aucejo et al. [494, 495] density 
Aucejo  et al. [496] viscosity 
Aucejo  et al. [232] viscosity, density 
Awwad  and Salman [329] viscosity, density 
Awwad  et al. [331] viscosity 
Awwad and Allos [497] viscosity, density 
Awwad et al. [331, 332] density 
Beale and Docksey [498] critical pressure, critical temperature, boiling point 
Benson et al. [499] density 
Berger [339] boiling point 
Bessieres, D. et al. [500]  
Bhattacharyya et al. [340] density 
Bidlack and Anderson [501] viscosity 
Bingham and Fornwalt [502] density, viscosity 
Boelhouwer [341] density 
Boord et al. [158] boiling point, density, freezing point 
Bridgman [344] vapor pressure 
Burgdorf et al. [503] viscosity, thermal conductivity, density 
Campbell et al. [504] boiling point 
Caudwell et al. [505] viscosity, density 
Celda et al. [349] density 
Celda et al. [506] viscosity 
Chawla et al. [351] density 
Chevalier et al. [352] viscosity, density 
Cooper et al. [161] boiling point 
Cooper  and Asfour [354] viscosity, density 
Crawford and Harbourn [507] freezing point 
Cutler [508] density 
Cutler et al. [509] density, viscosity 
De Lorenzi et al. [357] viscosity, density 
Deanesly and Carleton [356] density, freezing point 
Dejoz et al. [510] density, boiling point, vapor pressure 
DeLorenzi et al. [357] density 
Dernini et al. [358] density 
Diaz Pena and Menduina [359] density 
Diaz Pena and Nunez 
Delgado 

[360] density 

Diaz Pena and Tardajos [361] density 
Dixon [249] density 
Dornte and Smyth [511] density 
Drabek and Cibulka [512] density 
Ducoulombier  et al. [363] viscosity 
Dymond et al. [366] viscosity 
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Author(s) Reference Topic 
Dymond et al. [513] viscosity, density 
Dymond et al. [514, 515] density 
Evans [367] viscosity, density, boiling point 
Fenske et al. [253] boiling point 
Ferhat-Hamida and 
Philippe 

[369] density 

Findenegg [371] density 
Finke et al. [372] triple point 
Francis [516] critical temperature, density 
Garcia et al. [517] viscosity 
Gensler et al. [518] boiling point 
Gierycz et al. [519] vapor pressure 
Giller and Drickamer [520] viscosity, freezing point 
Gollis et al. [87] thermal conductivity, freezing point 
Gomez-Ibanez and Liu [521] boiling point, density 
Gonzalez et al. [522] viscosity, density 
Gouel   [377] viscosity 
Gouel [523] density 
Grigg et al. [524] density 
Griot et al. [381] density 
Grolier and Benson [525] density 
Grolier et al. [382] density 
Guieu et al. [526] freezing point 
Hamam et al. [527] density 
Hansen and Hansen [528] boiling point 
Hogenboom et al. [529] viscosity, freezing point 
Horie and Morikawa [530] density, boiling point, freezing point 
Houser and McLean [531] density, vapor pressure 
Huffman et al. [127] triple point 
Iwahashi et al. [532] viscosity 
Jasper et al. [391] surface tension 
Jessup and Stanley [533] boiling point, density, freezing point 
Jobst [534] thermal conductivity 
Kashiwagi and Makita [535] viscosity 
Kashiwagi et al. [536] thermal conductivity 
Keistler and Andrews [537] density, vapor pressure 
Keramidi and Rastorguev [538] viscosity 
Kharasch et al. [539] boiling point 
Kincannon and Manning [540] boiling point, density 
Knapstad et al. [541] viscosity 
Knapstad et al. [542] viscosity, density 
Korosi and Kovats [176] surface tension 
Krafft [396] density, freezing point, vapor pressure 
Kurtyka and Kurtyka [543] boiling point 
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Author(s) Reference Topic 
Lainez et al. [399] density 
Landau and Wuerflinger [544] density 
Leslie and Heuer [545] freezing point 
Luther [151] density 
Lyusternik and Zhdanov [180] viscosity 
Lyvers and Belyanina [546] density 
Mair [547] freezing point 
Mair and Streiff [131] density, boiling point, freezing point 
Mallan  et al. [548] thermal conductivity 
Maman [218] boiling point, density 
Mansker et al. [410] density 
Marsh et al. [100] heat capacity 
Mears et al. [549] boiling point, freezing point, density 
Messow et al. [416] density 
Mogollon et al. [418] critical temperature 
Moreiras et al. [550] viscosity, density 
Morse [551] boiling point 
Mukhamedzyanov et al. [552] thermal conductivity 
Mustafaev [553] thermal conductivity 
Nayak et al. [554] viscosity, density 
Neruchev et al. [555] density, boiling point 
Ortega et al. [556, 557, 

558]
density 

Ott and Goates [559] freezing point 
Pak and Kay [560] critical pressure, critical temperature 
Parks and Huffman [133] freezing point 
Petrov and Kaplan [431] density, boiling point 
Philippe and Delmas [432] density 
Powell and Groot [435] thermal conductivity 
Quayle et al. [561] density, boiling point 
Ralston et al. [438] freezing point 
Rosenthal and Teja [444] critical pressure, critical temperature 
Sahgal and Hayduk [562] density 
Sakiadis and Coates [445] thermal conductivity 
Schiessler [230] freezing point, vapor pressure 
Schiessler et al. [190] density 
Schmidt et al. [563] density, surface tension 
Seyer [564] freezing point 
Shen and Williamson [298] density 
Shen et al. [565] density 
Shepard et al.   [566] density, freezing point, viscosity, boiling point 
Smith [567] thermal conductivity 
Smith et al. [450] critical temperature 
Snyder and Winnick [452] density 
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Author(s) Reference Topic 
Sondheimer and Amiel [453] boiling point 
Sondheimer et al. [568] freezing point 
Streiff et al. [141] freezing point 
Suri [569] density 
Takagi and Teranishi [570] density 
Tanaka  [456] viscosity, density 
Tanaka  et al. [571] thermal conductivity 
Tardajos et al. [457, 458] density 
Teja et al. [461] critical temperature 
Terhoff [462] density 
Tilicheev et al. [223] boiling point, freezing point 
Tilicheev et al. [465] density 
Timmermans [572] freezing point 
Trejo [466] density 
Trenzado et al. [573] viscosity, density 
Treszczanowicz and Lu [574] vapor pressure 
Treszczanowicz et al. [468, 575] density 
Tsimering and Kertes [576] density 
Vogel [473] boiling point, density 
Vogel and Schuberth [577] density 
Wakefield and Marsh [476] viscosity 
Wakefield [475] viscosity, density 
Wang et al. [477, 578] density 
Weissler and Del Grosso [579] density 
Wilhelm et al. [480, 481] density 
Willingham et al. [312] vapor pressure 
Witek et al. [482] density 
Wu et al. [483] viscosity 
Yanes et al. [580] density 
Young [484] vapor pressure, boiling point 
Ziegler et al. [486] boiling point, freezing point 
Zook and Goldey [581] boiling point 
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Table 2.  Surrogate mixture formulation. 
 
Fluid CAS # Formula MW Mole% 
3-ethyl-4,4-dimethyl-2-pentene 53907-59-8 C9H18 126.24 9.98 
Cyclodecene 3618-12-0 C10H18 138.25 2.11 
2-methylnonane 871-83-0 C10H22 142.28 2.32 
2-methylnaphthalene 91-57-6 C11H10 142.20 5.10 
2-methyldecalin 2958-76-1 C11H20 152.28 22.35 
3-methyldecane 13151-34-3 C11H24 156.31 10.84 
1-dodecene 112-41-4 C12H24 168.32 2.64 
Cyclododecane 294-62-2 C12H24 168.32 4.27 
4-methyl-4-undecene 61142-40-3 C12H24 168.32 10.45 
n-dodecane 112-40-3 C12H26 170.33 1.93 
Heptylcyclohexane 5617-41-4 C13H26 182.35 14.22 
1-tridecene 2437-56-1 C13H26 182.35 1.45 
2,7,10-trimethyldodecane 74645-98-0 C15H32 212.41 10.38 
n-hexadecane 544-76-3 C16H34 226.44 1.95 
              Σ = 99.99 % 
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3. Chemical Characterization 

 Rocket propellant RP-1 is a kerosene, a complex hydrocarbon mixture that may be 

thermally unstable at temperatures above 600 K. Thus, it was critical to the success of this project 

to characterize the components in RP-1, both before and after experimental properties studies.  A 

discussion of the procedures, interpretation of results and identification of components are 

provided in Appendix B.  Tables 3 to 7 provide the results of the chemical characterization of the 

RP-1 sample. 
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Table 3.  Tier 1 - Identification of constituents of 2 % (mass/mass) or higher.  These constituents 
represent 59 % of the total mass in the sample. 
 
Peak Retention 

time, min 
Profile Corr. 

coef. 
Conf. Name CAS Reg. No. RMM % 

1 4.480 S 50 M 2,2-dimethyl- 
butane 

000075-83-2 86.11 2.375 

2 4.619 A 64 H 3-methyl- 
decane 

013151-34-3 156.19 3.985 

3 5.117 A 43 M 3-ethyl-4,4- 
dimethyl-2- 
pentene 

053907-59-8 126.14 2.726 

4 5.486 A 47 M 2,9-dimethyl- 
decane 

001002-17-1 170.2 6.280 

5 5.808 S 94 H 2-methyl-cis- 
decalin 

1000152-47-3 152.16 3.970 

6 6.008 A 98 H decahydro-2- 
methyl 
naphthalene 

002958-76-1 152.16 2.574 

7 6.307 S 50 M cis-syn-1- 
methyl- 
decalin 

1000158-89-1 152.16 4.652 

8a†  6.468 
 
6.537 
 
6.653 

S 
 
A 
 
S 

46 
 
 
 
43 

M 
 
 
 
M 

1-hexyl-3- 
methylcyclo 
pentane 
 
cyclo  
dodecane 

061142-68-5 
 
 
 
000294-62-2 

168.19 
 
 
 
168.19 

 
 
5.099 

9 7.443 S 43 M 1-dodecene 000112-41-4 168.19  
5.995 

10 7.789 S 78 H 2-methyl- 
undecane 

007045-71-8 170.2 3.124 

11 7.996 S 59 M 3-methyl- 
undecane 

001002-43-3 170.2 2.839 

12 8.150 A 56 M 2,2-dimethyl- 
decadi-3,5- 
ene 

055638-50-1 166.17 2.735 

13 8.464 S NA M methylcyclo- 
dodecane 

NA 182.22 3.580 

14 9.194 S 90 H dodecane 000112-40-3 170.20 5.327 
15 9.746 S 50 M 2,7,10- 

trimethyl- 
dodecane 

074645-98-0 212.25 3.765 

 
† This peak consists of two coeluting solutes. 
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Table 4.  Tier 2 - Identification of constituents of 1 % (mass/mass) or higher.  These constituents 
represent 18.7 % of the total mass of the sample. 
 
Peak Retention 

time, min 
Profile Corr. 

coef. 
Conf. Name CAS Reg. No. RMM % 

a 3.144 A 50 
 
 
38 

M 
 
 
M 

2,7-di- 
methyl octane 
or 
2-methyl 
nonane 

001072-16-8 
 
 
000871-83-0 

142.17 
 
 
142.17 

1.329 

b 4.303 S 89 H cyclodecene 003717-12-0 138.14 1.610 
c 4.373 A 50 U cis-deca- 

hydro 
naphthalene 

108746-01-6 138.14 1.174 

d 6.944 A 14 M z-1,9- 
dodeca- 
diene 

1000245-71-0 166.17 1.754 

e 7.075 S 15 M 4-methyl-4- 
uncecene 

061142-40-3 168.19 1.663 

f 9.846 S 20 M x-tridecene†  NA 182.2 1.115 
g 10.230 A 30 M 1-tridecene 111270-56-1 182.2 1.241 
h 10.514 S 72 H heptylcyclo- 

hexane 
005617-41-4 168.19 1.429 

i 10.698 S 43 M x-tridecene NA 182.2 1.305 
j 11.359 A 45 M x-tridecene NA 182.2 1.977 
k 11.881 S 58 M 2,10-di- 

methyl 
undecane 

017301-27-8 184.22 1.507 

l 12.349 A NA M x-methyl 
tridecane 

NA 197.2 1.494 

m 12.787 S 94 H 2-methyl 
naphthalene 

000091-57-6 142.08 1.249 

aa 13.623 S 97 H tridecane 000629-50-5 184.22 1.080 
 
† x signifies uncertainty in the location of the double bond or the methyl group. 
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Table 5.  Light fraction-identification of constituents of lightest components.  These components 
represent 1.7 % of the total mass of the sample. 
 
Peak Retention 

time, min 
Profile Corr. 

coef. 
Conf. Name CAS Reg. No. RMM % 

laa 0.795 A 2 M methane 107902-82-8 16.03 trace 
la 1.924 A 50 H nonane 000111-84-2 128.16 0.179 
lb 2.615 A 90 H 1,3,5-trimethyl-

cyclohexane 
001795-26-2 126.14 0.654 

1d 3.551 A 52 H 2-methyldecane 006975-98-0 156.19 0.817 
 
 
 
Table 6.  Heavy fraction-identification of constituents of heaviest components.  These constituents 
are not tabulated for mass percent. 
 

Peak Retention 
time, min 

Profile Corr. 
coef. 

Conf. Name CAS Reg. No. RMM % 

ha 21.776 S 30 M 5-methyl-2-undecene 056851-34-4 168.19  
hb 22.010 A 86 H 2,6,10-trimethyl- 

dodecene†  
NA 210.25  

hc 22.433 A 59 
 
47 

U 3-methyl tridecane 
or 
tetradecane 

006418-41-3 
or 
000629-59-4 

198.24 
 
198.24 

 

hd 24.083 A 43 
 
22 

U hexadecane, 
or 
1-tetradecene 

000544-76-3 
or 
001120-36-1 

226.27 
 
196.22 

 

 
† The location of double bond is not clear. 

 
 
 

Table 7.  Thermal decomposition kinetics measurements on RP-1. 
 

Temperature 
 

(ºC) 

k ± 1σ 
 

(s-1) 

t1/2 
 

(min) 

 
375 

 
400 

 
425 

 
500 

 
(6.92 ±  0.75) x10-5 

 
(2.00 ±  0.23) x10-4 

 
(3.85 ±  0.53) x10-4 

 
(1.07 ±  0.17) x10-3 

 
167 

 
58 

 
30 

 
11 
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4.  Density 

4.1 Density at Atmospheric Pressure 

 
The density of RP-1 was measured with an Archimedes (buoyancy) technique over the 

temperature range 1 to 43 ˚C under a nitrogen blanket at the prevailing atmospheric pressure 

(approximately 83 kPa). These measurements provide a direct determination of the density. They 

were conducted to provide a consistency check on the wide-ranging measurements made at 

Azerbaijan State Oil Academy and to investigate the potential batch-to-batch variation in this 

property. 

The core of the experimental apparatus consists of a cylindrical aluminum “sinker” (m = 

11.54077 ± 0.00010 g; V = 4.2735 ± 0.0013 cm3) that is housed in a test cell containing the fluid of 

interest. This sinker is suspended from a balance, and the experiment consists of weighing the 

(sinker + suspension device) and the suspension device alone (to give the “tare” weight). The 

density is given by 

( )
sinker

sinkersinker

V
WWm tare−−

=ρ , 

where Wsinker and Wtare are the balance readings, and msinker and Vsinker are the mass and volume of 

the sinker. The volume of the sinker is adjusted for temperature from literature values for the 

thermal expansion of aluminum. Each density determination comprises multiple tare and sinker 

weighings, and the balance is calibrated before each determination by use of a small brass 

calibration mass placed on an auxiliary pan located above the test cell. The total uncertainty in the 

density is estimated to be ±0.10 % (k = 2). 
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Temperature is controlled by an external bath circulating a propylene gycol mixture 

through channels in a copper shield surrounding the test cell. The temperature of the fluid is 

measured with a standard platinum resistance thermometer located in a thermowell in the test cell; 

its resistance is read with a nanovolt-level multimeter. The uncertainty in the temperature is 

±0.010 ˚C. The standard deviation in the temperature over the 20 minutes needed to complete a 

single density determination averaged 0.004 ˚C. The atmospheric pressure was read with a 

vibrating quartz crystal type pressure transducer with an uncertainty of ±0.07 kPa. 

The results are presented in Table 8 and Figure 1(a) for the original sample of RP-1. Three 

repetitions were carried out at each temperature. The sample was held statically in the cell a total of 

10 days, and repeats of the 25 ˚C point taken nine days apart exhibited variations less than 0.15 % 

in density. This provides an indication that the sample did not undergo any gross degradation or 

fractionation during the tests. These data have been correlated by a second-order polynomial 

(given in the figure) to facilitate comparisons. 

Results for the ultra-low sulfur sample of RP-1 are given in Table 9. The percentage 

differences in density compared to the original RP-1 sample are shown in Figure 1(b) (where the 

baseline is the polynomial fit of the densities of the original sample). The differences between the 

two samples are seen to average 0.28 %, with the ultra-low sulfur sample having the higher 

densities.  
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Table 8.  Experimental densities for RP-1 (original sample) under nitrogen. 

_________________________________________________________ 

 Temperature, ˚C Pressure, kPa Density, kg/m3 
_________________________________________________________ 
 2.902 83.59 813.18 
 2.899 83.59 813.30 
 2.892 83.59 813.28 
 23.283 83.72 799.01 
 23.319 83.69 799.09 
 23.355 83.67 799.01 
 25.066 83.07 798.71 
 25.072 83.10 797.58 
 25.083 83.10 797.66 
 43.115 83.07 785.01 
 43.109 83.10 784.96 
 43.050 83.10 785.09 
_________________________________________________________ 
 
 
 
 
Table 9.  Experimental densities for RP-1 (ultra-low sulfur) under nitrogen. 

_________________________________________________________ 

 Temperature, ˚C Pressure, kPa Density, kg/m3 
_________________________________________________________ 
 1.081 82.13 816.71 
 1.091 82.12 816.70 
 1.106 82.10 816.60 
 23.941 82.61 800.88 
 23.911 82.61 800.91 
 23.878 82.63 801.15 
 39.693 82.25 790.01 
 39.705 82.23 789.79 
 39.720 82.25 789.68 
_________________________________________________________ 
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Figure 1.  Density of RP-1 at atmospheric pressure; (a) measured densities; (b) deviations of 

density from the simple polynomial correlation. 
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4.2  Density at Elevated Pressures 

 Densities were measured with a constant-volume piezometer that operates at conditions up 

to 745 K and 60 MPa. This study was carried out under a contract to Prof. Ilmudin M. Abdulagatov 

(Russian Academy of Sciences, Makhachkala) who set up a collaborative project with Prof. Nazim 

D. Azizov (Azerbaijan State Oil Academy (ASOA), Baku). The uncertainty estimated by ASOA 

for the density measurements is 0.5 kg·m-3 (for T<623 K) and 0.1 % (for T>623 K). Those 

experimental data were privately communicated to NIST and were used, in addition to NIST 

measurements, to develop the models discussed in Section 2. 
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5.  Heat Capacity 

 Heat capacities are fundamental to our knowledge of the thermal properties of any 

substance or mixture. They may be regarded as a measure of the rate of change of energy storage in 

molecular systems. Heat capacity is defined by the operational path taken during an exchange of 

energy with the surroundings; the path may be at a constant pressure, at constant density, or along 

a phase saturation curve. In practice, we may measure a change in enthalpy at constant pressure Cp 

or a change in internal energy at constant volume Cv. However, it is not possible to measure a heat 

capacity at a fixed pressure condition of vapor-liquid saturation. This is so because an addition of a 

small quantity of energy will evaporate a portion of the sample but will not raise its temperature, 

and thus an infinite heat capacity would be calculated. On the other hand, it is feasible to directly 

measure heat capacity in the vapor-liquid two-phase region, Cv
(2), and then calculate the saturated 

liquid heat capacity from well-established thermodynamic relations. 

 Heat capacities at constant pressure were measured with a flow calorimeter that operates at 

conditions up to 671 K and 60 MPa. This study was carried out under a contract to Prof. Ilmudin M. 

Abdulagatov (Russian Academy of Sciences, Makhachkala) who set up a collaborative project 

with Prof. Nazim D. Azizov (Azerbaijan State Oil Academy (ASOA), Baku). The uncertainty 

estimated by ASOA for the heat capacity measurements is 2 % (for T<573 K) and 3 to 4 % (for 

T>573 K). Those experimental data were privately communicated to NIST and were used, in 

addition to NIST measurements, to develop the models discussed in Section 2. 
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6.  Thermal Conductivity 
 

Transient hot-wire measurements of the thermal conductivity of the RP-1 liquid sample 

were made along nine isotherms at temperatures from 300 to 700 K with pressures up to 70 MPa.  

Rapid decomposition was observed at 700 K.  Only data up to 650 K (8 isotherms) are shown in 

Figure 2. The transient hot-wire instrument has been described in detail. The measurement cell is 

designed to closely approximate transient heating from a line source into an infinite fluid medium. 

The ideal (line source) temperature rise ∆Tid is given by, 

  ,T + T =  
Cr

4a + (t) 
4

q = T i

10

=1i
w

0
2id δ

πλ ∑∆



















∆ lnln    (1) 

where q is the power applied per unit length, λ is the thermal conductivity of the fluid, t is the elapsed 

time, a = λ/ρCp is the thermal diffusivity of the fluid, ρ is the density of the fluid, Cp is the isobaric 

specific heat capacity of the fluid, r0 is the radius of the hot wire, C = 1.781... is the exponential of 

Euler's constant, ∆Tw is the measured temperature rise of the wire, and δTi are corrections to account 

for deviations from ideal line-source conduction. The significant corrections for the RP-1 

measurements are for the finite wire diameter and thermal radiation from the IR absorbing fluid. A 

plot of ideal temperature rise versus logarithm of elapsed time should be linear, such that thermal 

conductivity can be found from the slope, and thermal diffusivity can be found from the intercept 

of a line fit to the data.  

At time zero, a fixed voltage is applied to heat a small-diameter wire that is immersed in the 

fluid of interest. The wire is used as an electrical heat source, while its resistance increase allows 

determination of the transient temperature rise as a function of elapsed time. Two tungsten wires 

that have different lengths but the same 4 µm diameter are connected such that the response of the 



 

 40

short wire is subtracted from the response of the long wire to eliminate the effects of axial heat 

conduction. Short experiment times (nominally 1 s) and small temperature rises (nominally 1 to 3 

K) are selected to eliminate heat transfer by free convection. Experiments at several different 

heating powers (and temperature rises) allow verification that free convection is not significant. 

Heat transfer due to thermal radiation is more difficult to detect and correct when the fluid can 

absorb and re-emit infrared radiation such as RP-1. Thermal radiative heat transfer will increase 

roughly in proportion to the absolute temperature cubed and can be characterized from an increase 

in the apparent thermal conductivity as experiment time increases because radiative emission from 

the fluid increases as the thermal wave diffuses outward. Measurements of argon gas made prior to 

the RP-1 measurements verified that the apparatus was performing correctly. 

The results of 465 transient hot-wire measurements are given in Table 10 for temperatures 

from 300 K to 650 K. Each experiment is characterized by the initial cell temperature T0 and the 

mean experiment temperature Te. There are generally five experiments at each initial cell 

temperature to verify that convection was not significant, since convection depends strongly on the 

temperature rise (∆T = Te − T0). The conditions of the fluid during each measurement are given by 

the experimental temperature Te, pressure Pe, and density ρe. Two values of measured thermal 

conductivity are reported. The thermal conductivity without correction for thermal radiation is 

given by λe, while the value corrected for thermal radiation is given by λc. The magnitude of the 

radiation correction can be found through comparison of these two values and varies from 0.1 % at 

300 K to 3.5 % at 550 K, increasing to 6.6 % at 650 K. Both values of thermal conductivity are 

provided for comparison with literature data where the radiation correction has often not been 

considered. Details of the thermal radiation correction and validation of its use with liquid toluene 

have been presented elsewhere. Measured thermal conductivity data for RP-1, corrected for 
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thermal radiation, are shown in Figure 3. Empirical values for the product of the mean absorption 

coefficient times the refractive index squared (Kn2) are provided in Figure 4 as a function of fluid 

density (temperatures range from 300 K to 650 K). The solid line is given by a cubic polynomial fit 

in terms of density; the fit was used to correct the transient hot-wire data for thermal radiation. 

Measurements were made at increasing temperatures on the original sample from 300 K to 

600 K. The sample was collected for chemical analysis and the cell was charged with fresh RP-1 

for measurements at 650 K. The 650 K sample was collected and the cell was charged again with 

fresh sample for the 700 K isotherm. Rapid decomposition of the RP-1 sample was observed at 

700 K. Measured thermal conductivity at 700 K was significantly higher and inconsistent with 

values obtained at lower temperatures. The 700 K sample was collected and the three samples 

were analyzed for decomposition by gas chromatography-mass spectrometry-infrared detection 

(GC-MS-IR). There is clear evidence in the 650 K sample of sample reactions and discoloration 

with a significant increase in aromatics, including heavier aromatics such as naphthalenic 

compounds. The 700 K sample shows the predominance of these reactions with a further 

significant increase in aromatic and napthalenic components. 

After significant reactions were observed at 700 K, a study of measured thermal 

conductivity as a function of residence time at 650 K was made. After filling and initial 

temperature equilibration at 650 K, there was a steady increase in cell pressure and decrease in cell 

temperature. While this would be characteristic of cracking reactions, which are endothermic and 

produce products of low molecular weight, chemical analysis suggests that other reactions are also 

responsible for the observed changes. The pressure increase was from 13.1 MPa to 14.8 MPa over 

a 9 h period. The thermal conductivity increased by 0.3 % over the same period, while the 

temperature decreased by 0.4 K. This thermal conductivity is 2.4 % smaller than expected based 
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on the changes in temperature and pressure. Thus, the thermal conductivity changes by about 2 % 

due to changes in sample composition during this period at 650 K. This new isotherm agreed with 

the previous measurements at 650 K to within about 3 %. However, some of this disagreement is 

likely due to a solid coating that was present on the hot wires after exposure to the RP-1 sample at 

700 K. 

Figure 5 shows significant deposits of solid material that were found on the hot wires after 

measurements at 700 K. It appears that the material was molten but nonvolatile when the RP-1 

sample was flashed and removed at 700 K.  Small diameter cylindrical sections that are only 

slightly larger than the wire diameter are seen between the larger “beads”. The spherical-bead 

shape of the deposits was likely due to minimization of interfacial forces at the molten film-wire 

and film-gas boundaries. Measurements were made on liquid toluene near 300 K after the 

measurements at 700 K and excellent agreement (0.3 % difference) was found with reference data 

for the thermal conductivity of toluene even with the presence of the solid material on the wire. 

Thus, the thermal conductivity of the solid deposit is likely close to that of toluene, an aromatic 

material, but slightly different from` that of the original RP-1 sample. The deposit was not soluble 

in toluene at 300 K. 

The uncertainty of the measured thermal conductivity data is less than 0.5 % for 

temperatures from 300 to 450 K where decomposition and thermal radiation were not significant. 

At higher temperatures, the uncertainty increases due to sample decomposition and increased 

thermal radiation heat transfer. This uncertainty is about 1.0 % at 550 K and increases significantly 

when the effects of decomposition are observable in the measured thermal conductivity as a 

function of sample residence time at 650 K. At 650 K the uncertainty is about 4 %, due largely to 

changes in sample composition. 
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Deviations between the measured thermal conductivity data, corrected for thermal 

radiation, and the corresponding states model developed in this project for the thermal 

conductivity of RP-1 are shown in Figure 6. The deviations are generally within 3 % for 

temperatures between 300 K and 400 K, but the model is systematically higher than the data as the 

density decreases along an isotherm and as temperature increases. The model is systematically 4 % 

to 12 % higher than the data along the 650 K isotherm. The data for each isotherm are consistent 

within the uncertainties given above, both within the isotherm and among the eight isotherms. 

There are some “discontinuities” of the order of 1 % in the deviation plot along the higher 

temperature isotherms. These “discontinuities” are not present in the measured thermal 

conductivity data, as shown in Figure 3. This is likely a convergence issue in the corresponding 

states model that would have a small impact on designs based on this model for the thermal 

conductivity of RP-1. The corresponding states model is based on thermal conductivity data for 

pure components that typically have not been corrected for thermal radiation. Thus it is expected 

that the corresponding states model will predict higher thermal conductivities, more like the 

uncorrected thermal conductivity values for RP-1 measured in this work. The correction for 

thermal radiation was as large as 6.6 % at the lowest densities along the 650 K isotherm. Thermal 

radiation accounts for about half of the systematic deviations shown in Figure 6. A thorough 

development of the corresponding states model would need to consider the contribution of thermal 

radiation on the pure components used in the model. 
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Figure 2.  Range of thermal conductivity measurements on liquid RP-1. 
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Figure 3.  Measured thermal conductivity of RP-1 corrected for thermal radiation (pressure from 
0.1 MPa to 70 MPa). 

 

Figure 4.  Empirical optical parameters for radiation correction of RP-1 data. 
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Figure 5.  Solid deposits with diameters up to eight times that of the 4 µm hot wires were found 
after measurements on RP-1 at 650 K. 

 

Figure 6.  Deviations between the radiation corrected thermal conductivity data and the 
corresponding-states model for RP-1 developed in this work. 
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Table 10. Thermal conductivity of liquid RP-1. 

Point ID T0 
(K) 

Te 
(K) 

Pe 
(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

2001 299.998 301.798 63.3444 0.83331 0.12705 0.12695 
2002 299.998 302.036 63.3249 0.83316 0.12722 0.12712 
2003 300.003 302.302 63.3083 0.83299 0.12710 0.12700 
2004 300.004 302.559 63.2909 0.83283 0.12716 0.12706 
2005 300.002 302.834 63.2699 0.83266 0.12712 0.12702 
2006 299.985 301.802 60.5341 0.83192 0.12667 0.12656 
2007 299.991 302.041 60.5107 0.83177 0.12659 0.12649 
2008 300.002 302.302 60.4845 0.83160 0.12640 0.12633 
2009 300.006 302.571 60.4609 0.83143 0.12631 0.12620 
2010 300.003 302.844 60.4359 0.83125 0.12632 0.12621 
2011 300.002 301.837 53.6465 0.82842 0.12523 0.12508 
2012 300.018 302.092 53.6341 0.82825 0.12512 0.12499 
2013 300.016 302.343 53.6227 0.82809 0.12479 0.12467 
2014 300.025 302.616 53.6114 0.82792 0.12475 0.12462 
2015 300.037 302.909 53.5993 0.82774 0.12495 0.12483 
2016 300.021 301.875 46.0715 0.82440 0.12346 0.12332 
2017 300.028 302.121 46.0630 0.82424 0.12295 0.12283 
2018 300.030 302.383 46.0541 0.82408 0.12287 0.12274 
2019 300.026 302.648 46.0468 0.82391 0.12280 0.12265 
2020 300.036 302.946 46.0404 0.82372 0.12317 0.12295 
2021 300.002 301.892 37.7058 0.81977 0.12145 0.12129 
2022 300.000 302.132 37.7019 0.81961 0.12139 0.12122 
2023 300.011 302.401 37.6976 0.81944 0.12100 0.12080 
2024 300.008 302.674 37.6932 0.81926 0.12105 0.12088 
2025 300.021 302.976 37.6688 0.81905 0.12118 0.12102 
2026 299.999 301.908 31.0595 0.81591 0.11999 0.11981 
2027 299.996 302.152 31.0539 0.81574 0.11942 0.11924 
2028 300.011 302.427 31.0473 0.81556 0.11944 0.11926 
2029 300.006 302.702 31.0387 0.81537 0.11922 0.11903 
2030 300.016 303.006 31.0311 0.81517 0.11955 0.11936 
2031 300.043 301.953 29.6071 0.81501 0.11886 0.11867 
2032 300.056 302.217 29.5643 0.81481 0.11923 0.11905 
2033 300.052 302.479 29.5309 0.81462 0.11907 0.11889 
2034 300.062 302.767 29.5057 0.81441 0.11914 0.11895 
2035 300.051 303.052 29.5016 0.81422 0.11936 0.11916 
2036 300.011 301.954 23.3521 0.81119 0.11786 0.11759 
2037 300.022 302.214 23.3541 0.81101 0.11777 0.11753 
2038 300.028 302.486 23.3358 0.81081 0.11751 0.11731 
2039 300.030 302.771 23.3001 0.81060 0.11744 0.11723 
2040 300.039 303.078 23.2702 0.81037 0.11742 0.11721 
2041 300.011 301.986 15.4211 0.80605 0.11570 0.11548 
2042 300.012 302.240 15.4388 0.80588 0.11567 0.11544 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

2043 300.027 302.526 15.4583 0.80569 0.11547 0.11525 
2044 300.010 302.795 15.4736 0.80551 0.11511 0.11488 
2045 300.025 303.113 15.4863 0.80530 0.11509 0.11486 
2046 299.997 301.983 12.0832 0.80380 0.11504 0.11481 
2047 300.016 302.262 12.0704 0.80359 0.11456 0.11432 
2048 300.007 302.526 12.0827 0.80341 0.11420 0.11393 
2049 300.022 302.828 12.1065 0.80321 0.11422 0.11395 
2050 300.011 303.123 12.1261 0.80301 0.11434 0.11410 
2051 299.987 302.001 6.2210 0.79967 0.11324 0.11299 
2052 299.995 302.270 6.2334 0.79948 0.11278 0.11253 
2053 300.013 302.565 6.2425 0.79927 0.11257 0.11232 
2054 300.012 302.857 6.2477 0.79906 0.11251 0.11225 
2055 300.015 303.168 6.2466 0.79883 0.11263 0.11238 
2056 299.988 302.028 0.2179 0.79520 0.11148 0.11122 
2057 299.999 302.308 0.1941 0.79497 0.11086 0.11060 
2058 300.003 302.594 0.1755 0.79474 0.11070 0.11043 
2059 300.003 302.892 0.1675 0.79450 0.11101 0.11067 
2060 300.001 303.204 0.1792 0.79428 0.11072 0.11045 
3001 351.854 353.436 66.4743 0.80567 0.12331 0.12296 
3002 351.854 353.659 66.4227 0.80551 0.12212 0.12177 
3003 351.870 353.904 66.3775 0.80535 0.12219 0.12184 
3004 351.861 354.161 66.3535 0.80520 0.12179 0.12144 
3005 351.865 354.379 66.3472 0.80508 0.12268 0.12236 
3006 351.845 353.439 66.2878 0.80556 0.12285 0.12250 
3007 351.847 353.706 66.2729 0.80540 0.12228 0.12189 
3008 351.865 353.900 66.2542 0.80529 0.12236 0.12197 
3009 351.846 354.127 66.2306 0.80515 0.12232 0.12196 
3010 351.858 354.367 66.1862 0.80499 0.12238 0.12202 
3011 351.847 353.444 65.9787 0.80538 0.12248 0.12212 
3012 351.846 353.647 65.9703 0.80526 0.12250 0.12214 
3013 351.849 353.872 65.9607 0.80513 0.12252 0.12216 
3014 351.850 354.104 65.9512 0.80500 0.12246 0.12211 
3015 351.856 354.356 65.9398 0.80486 0.12229 0.12193 
3016 351.828 353.438 58.4753 0.80097 0.12102 0.12064 
3017 351.825 353.652 58.4373 0.80083 0.12042 0.12004 
3018 351.843 353.889 58.4229 0.80069 0.12051 0.12013 
3019 351.839 354.120 58.4251 0.80056 0.12034 0.11995 
3020 351.832 354.361 58.4319 0.80043 0.12045 0.12006 
3021 351.823 353.454 53.0937 0.79767 0.11957 0.11917 
3022 351.827 353.671 53.0800 0.79753 0.11895 0.11856 
3023 351.836 353.904 53.0655 0.79739 0.11905 0.11865 
3024 351.834 354.140 53.0528 0.79725 0.11897 0.11857 
3025 351.839 354.396 53.0392 0.79709 0.11907 0.11866 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

3026 351.829 353.484 45.9442 0.79308 0.11759 0.11716 
3027 351.823 353.698 45.9346 0.79295 0.11702 0.11660 
3028 351.833 353.936 45.9234 0.79280 0.11698 0.11655 
3029 351.838 354.184 45.9124 0.79265 0.11707 0.11664 
3030 351.823 354.424 45.9021 0.79250 0.11690 0.11647 
3031 351.816 353.500 38.1685 0.78782 0.11518 0.11472 
3032 351.816 353.724 38.1724 0.78769 0.11464 0.11419 
3033 351.830 353.969 38.1784 0.78754 0.11448 0.11403 
3034 351.829 354.213 38.1884 0.78740 0.11466 0.11421 
3035 351.826 354.471 38.1983 0.78725 0.11463 0.11417 
3036 351.808 353.523 30.8077 0.78253 0.11286 0.11238 
3037 351.817 353.757 30.8057 0.78238 0.11233 0.11189 
3038 351.833 354.008 30.8008 0.78222 0.11279 0.11231 
3039 351.831 354.258 30.7953 0.78206 0.11226 0.11178 
3040 351.837 354.528 30.7900 0.78189 0.11240 0.11192 
3041 351.816 353.568 23.0974 0.77660 0.11061 0.11011 
3042 351.825 353.808 23.0969 0.77645 0.11034 0.10983 
3043 351.823 354.045 23.0942 0.77629 0.11074 0.11023 
3044 351.835 354.313 23.0907 0.77611 0.10987 0.10936 
3045 351.827 354.573 23.0858 0.77594 0.11005 0.10954 
3046 351.849 353.609 21.2003 0.77506 0.10942 0.10891 
3047 351.849 353.840 21.2056 0.77491 0.10962 0.10911 
3048 351.868 354.104 21.2109 0.77474 0.10941 0.10890 
3049 351.873 354.364 21.2156 0.77457 0.10962 0.10911 
3050 351.864 354.629 21.2203 0.77440 0.10975 0.10923 
3051 351.845 353.642 15.1613 0.77001 0.10788 0.10735 
3052 351.848 353.875 15.1777 0.76986 0.10764 0.10711 
3053 351.861 354.135 15.1951 0.76970 0.10754 0.10701 
3054 351.853 354.390 15.2092 0.76954 0.10740 0.10687 
3055 351.846 354.657 15.2224 0.76936 0.10738 0.10684 
3056 351.832 353.645 11.9712 0.76722 0.10652 0.10598 
3057 351.859 353.905 11.9842 0.76704 0.10635 0.10581 
3058 351.868 354.163 11.9958 0.76687 0.10640 0.10585 
3059 351.864 354.424 12.0053 0.76670 0.10635 0.10580 
3060 351.862 354.700 12.0124 0.76651 0.10627 0.10573 
3061 351.813 353.659 6.1880 0.76188 0.10450 0.10394 
3062 351.828 353.909 6.1732 0.76168 0.10440 0.10383 
3063 351.840 354.178 6.1425 0.76146 0.10404 0.10348 
3064 351.840 354.448 6.1183 0.76124 0.10423 0.10367 
3065 351.845 354.737 6.0987 0.76101 0.10430 0.10374 
3066 351.818 353.696 0.6116 0.75633 0.10223 0.10165 
3067 351.845 353.967 0.6214 0.75614 0.10225 0.10167 
3068 351.847 354.228 0.6278 0.75594 0.10218 0.10159 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

3069 351.851 354.505 0.6282 0.75573 0.10237 0.10179 
3070 351.852 354.794 0.6056 0.75549 0.10213 0.10155 
4001 400.446 402.270 67.8698 0.78064 0.11752 0.11682 
4002 400.474 402.512 67.8711 0.78051 0.11731 0.11661 
4003 400.464 402.724 67.8715 0.78041 0.11797 0.11668 
4004 400.463 402.954 67.8743 0.78029 0.11748 0.11678 
4005 400.466 403.201 67.8738 0.78016 0.11730 0.11659 
4006 400.434 402.289 60.7558 0.77582 0.11560 0.11482 
4007 400.435 402.506 60.7558 0.77570 0.11542 0.11474 
4008 400.450 402.745 60.7602 0.77558 0.11528 0.11455 
4009 400.453 402.986 60.7647 0.77545 0.11524 0.11450 
4010 400.453 403.233 60.7700 0.77532 0.11508 0.11435 
4011 400.424 402.304 53.4350 0.77058 0.11347 0.11270 
4012 400.436 402.542 53.4325 0.77045 0.11291 0.11215 
4013 400.446 402.778 53.4091 0.77030 0.11289 0.11212 
4014 400.441 403.017 53.3763 0.77015 0.11292 0.11215 
4015 400.447 403.274 53.3494 0.76999 0.11292 0.11215 
4016 400.417 402.341 45.7511 0.76474 0.11113 0.11033 
4017 400.428 402.573 45.7250 0.76459 0.11118 0.11038 
4018 400.437 402.819 45.7046 0.76443 0.11054 0.10972 
4019 400.449 403.074 45.7046 0.76429 0.11051 0.10976 
4020 400.436 403.322 45.7239 0.76416 0.11041 0.10961 
4021 400.410 402.368 38.3898 0.75877 0.10869 0.10787 
4022 400.420 402.610 38.3544 0.75860 0.10823 0.10741 
4023 400.440 402.868 38.3270 0.75842 0.10815 0.10732 
4024 400.443 403.124 38.3062 0.75825 0.10806 0.10723 
4025 400.440 403.385 38.2888 0.75809 0.10800 0.10717 
4026 400.440 402.404 38.3049 0.75868 0.10862 0.10780 
4027 400.444 402.635 38.2825 0.75852 0.10840 0.10757 
4028 400.452 402.883 38.2644 0.75836 0.10810 0.10727 
4029 400.455 403.138 38.2591 0.75821 0.10806 0.10724 
4030 400.449 403.396 38.2724 0.75807 0.10833 0.10749 
4031 400.420 402.438 29.9102 0.75132 0.10580 0.10494 
4032 400.446 402.697 29.8883 0.75114 0.10567 0.10480 
4033 400.437 402.929 29.8703 0.75098 0.10553 0.10467 
4034 400.435 403.183 29.8701 0.75082 0.10546 0.10459 
4035 400.441 403.461 29.8844 0.75066 0.10543 0.10456 
4036 400.422 402.481 23.1390 0.74487 0.10323 0.10235 
4037 400.439 402.738 23.1129 0.74468 0.10287 0.10199 
4038 400.445 402.992 23.0911 0.74449 0.10291 0.10202 
4039 400.448 403.263 23.0714 0.74430 0.10296 0.10207 
4040 400.440 403.532 23.0644 0.74412 0.10279 0.10194 
4041 400.421 402.543 15.2520 0.73665 0.10018 0.09926 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

4042 400.409 402.774 15.2684 0.73651 0.10008 0.09916 
4043 400.434 403.053 15.2832 0.73633 0.09982 0.09890 
4044 400.432 403.324 15.2953 0.73616 0.09983 0.09891 
4045 400.447 403.626 15.3055 0.73597 0.09970 0.09877 
4046 400.428 402.578 11.7858 0.73274 0.09878 0.09785 
4047 400.433 402.827 11.7687 0.73254 0.09862 0.09769 
4048 400.443 403.097 11.7586 0.73234 0.09840 0.09746 
4049 400.437 403.369 11.7652 0.73216 0.09811 0.09718 
4050 400.441 403.661 11.7812 0.73197 0.09814 0.09721 
4051 400.415 402.618 5.9253 0.72564 0.09625 0.09530 
4052 400.417 402.870 5.9120 0.72544 0.09611 0.09516 
4053 400.430 403.150 5.9089 0.72523 0.09592 0.09496 
4054 400.423 403.423 5.9193 0.72504 0.09601 0.09506 
4055 400.429 403.726 5.9348 0.72483 0.09570 0.09469 
4056 400.407 402.659 0.5228 0.71842 0.09365 0.09268 
4057 400.420 402.929 0.5313 0.71822 0.09371 0.09274 
4058 400.419 403.200 0.5392 0.71802 0.09334 0.09237 
4059 400.419 403.490 0.5450 0.71780 0.09328 0.09231 
4060 400.435 403.808 0.5460 0.71755 0.09324 0.09227 
5001 447.986 449.670 68.6898 0.75732 0.11230 0.11117 
5002 447.991 449.870 68.6635 0.75721 0.11232 0.11118 
5003 447.993 450.077 68.6272 0.75708 0.11238 0.11119 
5004 447.983 450.283 68.5986 0.75695 0.11226 0.11112 
5005 447.989 450.514 68.5747 0.75682 0.11300 0.11184 
5006 447.928 449.652 59.8904 0.75048 0.11005 0.10887 
5007 447.966 449.886 59.9032 0.75037 0.10986 0.10868 
5008 447.944 450.075 59.9145 0.75029 0.10981 0.10863 
5009 447.939 450.291 59.9247 0.75018 0.10975 0.10856 
5010 447.935 450.518 59.9336 0.75008 0.10967 0.10848 
5011 447.904 449.679 49.9987 0.74213 0.10681 0.10558 
5012 447.905 449.882 50.0107 0.74203 0.10674 0.10551 
5013 447.907 450.099 50.0219 0.74192 0.10654 0.10531 
5014 447.911 450.330 50.0314 0.74180 0.10698 0.10574 
5015 447.919 450.575 50.0394 0.74168 0.10641 0.10517 
5016 447.906 449.729 41.2702 0.73404 0.10366 0.10239 
5017 447.904 449.937 41.2462 0.73390 0.10364 0.10237 
5018 447.911 450.166 41.2255 0.73375 0.10351 0.10223 
5019 447.919 450.409 41.2089 0.73360 0.10334 0.10206 
5020 447.907 450.637 41.2165 0.73348 0.10389 0.10260 
5021 447.889 449.755 34.3025 0.72703 0.10121 0.09991 
5022 447.895 449.974 34.3195 0.72691 0.10098 0.09968 
5023 447.899 450.200 34.3354 0.72680 0.10122 0.09991 
5024 447.923 450.468 34.3495 0.72665 0.10088 0.09957 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

5025 447.917 450.714 34.3608 0.72652 0.10087 0.09956 
5026 447.899 449.807 27.8189 0.71992 0.09862 0.09730 
5027 447.903 450.031 27.7971 0.71975 0.09845 0.09712 
5028 447.905 450.265 27.7795 0.71959 0.09856 0.09722 
5029 447.913 450.520 27.7664 0.71942 0.09853 0.09720 
5030 447.905 450.769 27.7621 0.71926 0.09835 0.09702 
5031 447.893 449.857 20.7169 0.71137 0.09580 0.09445 
5032 447.895 450.087 20.6985 0.71119 0.09573 0.09437 
5033 447.905 450.333 20.6836 0.71101 0.09554 0.09418 
5034 447.906 450.587 20.6850 0.71085 0.09550 0.09414 
5035 447.905 450.851 20.6988 0.71069 0.09536 0.09400 
5036 447.883 449.890 15.3503 0.70424 0.09352 0.09215 
5037 447.889 450.128 15.3608 0.70409 0.09326 0.09188 
5038 447.886 450.367 15.3694 0.70393 0.09370 0.09231 
5039 447.898 450.640 15.3777 0.70376 0.09316 0.09178 
5040 447.906 450.915 15.3851 0.70358 0.09306 0.09168 
5041 447.888 449.937 11.1635 0.69816 0.09158 0.09019 
5042 447.899 450.182 11.1639 0.69798 0.09154 0.09014 
5043 447.919 450.449 11.1449 0.69776 0.09142 0.09002 
5044 447.913 450.710 11.1238 0.69754 0.09136 0.08996 
5045 447.910 450.983 11.1067 0.69731 0.09121 0.08981 
5046 447.869 449.998 3.6297 0.68575 0.08778 0.08637 
5047 447.889 450.267 3.6382 0.68555 0.08785 0.08643 
5048 447.893 450.528 3.6454 0.68536 0.08783 0.08636 
5049 447.889 450.798 3.6525 0.68515 0.08771 0.08629 
5050 447.896 451.088 3.6577 0.68493 0.08764 0.08621 
5051 447.882 450.059 0.1765 0.67919 0.08582 0.08440 
5052 447.890 450.318 0.1697 0.67896 0.08591 0.08449 
5053 447.908 450.599 0.1764 0.67873 0.08576 0.08434 
5054 447.886 450.854 0.1878 0.67854 0.08579 0.08436 
5055 447.902 451.159 0.1979 0.67830 0.08562 0.08419 
6001 501.556 503.108 68.6557 0.73147 0.10791 0.10614 
6002 501.565 503.294 68.6482 0.73138 0.10802 0.10624 
6003 501.579 503.499 68.6109 0.73125 0.10790 0.10613 
6004 501.561 503.682 68.5784 0.73113 0.10766 0.10583 
6005 501.554 503.878 68.5536 0.73102 0.10773 0.10596 
6006 501.492 503.091 58.5297 0.72228 0.10462 0.10279 
6007 501.488 503.271 58.5390 0.72220 0.10456 0.10273 
6008 501.503 503.479 58.5461 0.72211 0.10454 0.10271 
6009 501.505 503.684 58.5529 0.72201 0.10442 0.10260 
6010 501.506 503.900 58.5550 0.72191 0.10465 0.10282 
6011 501.485 503.138 48.2361 0.71189 0.10097 0.09909 
6012 501.491 503.336 48.2135 0.71177 0.10086 0.09898 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

6013 501.500 503.542 48.1945 0.71164 0.10097 0.09909 
6014 501.493 503.749 48.1807 0.71151 0.10122 0.09933 
6015 501.487 503.966 48.1838 0.71140 0.10068 0.09885 
6016 501.454 503.160 39.1892 0.70169 0.09746 0.09555 
6017 501.471 503.375 39.1977 0.70158 0.09740 0.09548 
6018 501.486 503.596 39.2047 0.70146 0.09732 0.09540 
6019 501.497 503.826 39.2083 0.70134 0.09824 0.09629 
6020 501.480 504.039 39.2048 0.70121 0.09753 0.09560 
6021 501.469 503.232 30.9930 0.69126 0.09424 0.09228 
6022 501.475 503.441 30.9816 0.69112 0.09405 0.09209 
6023 501.475 503.657 30.9862 0.69099 0.09419 0.09222 
6024 501.488 503.893 31.0013 0.69087 0.09454 0.09221 
6025 501.501 504.142 31.0161 0.69074 0.09428 0.09231 
6026 501.470 503.297 22.7998 0.67936 0.09099 0.08900 
6027 501.487 503.526 22.8038 0.67921 0.09060 0.08861 
6028 501.493 503.753 22.8028 0.67906 0.09078 0.08879 
6029 501.506 504.000 22.7819 0.67887 0.09059 0.08859 
6030 501.516 504.254 22.7625 0.67868 0.09053 0.08853 
6031 501.487 503.385 15.4641 0.66692 0.08729 0.08528 
6032 501.492 503.609 15.4503 0.66673 0.08721 0.08520 
6033 501.506 503.854 15.4406 0.66654 0.08713 0.08511 
6034 501.506 504.098 15.4385 0.66636 0.08710 0.08508 
6035 501.507 504.354 15.4490 0.66620 0.08701 0.08499 
6036 501.489 503.429 11.7229 0.65968 0.08549 0.08347 
6037 501.498 503.660 11.7341 0.65953 0.08525 0.08323 
6038 501.497 503.893 11.7437 0.65937 0.08523 0.08321 
6039 501.488 504.135 11.7521 0.65921 0.08519 0.08317 
6040 501.506 504.407 11.7591 0.65902 0.08511 0.08309 
6041 501.473 503.483 5.7558 0.64636 0.08228 0.08025 
6042 501.484 503.723 5.7489 0.64614 0.08216 0.08013 
6043 501.475 503.961 5.7334 0.64590 0.08198 0.07995 
6044 501.501 504.244 5.7211 0.64563 0.08196 0.08021 
6045 501.499 504.508 5.7106 0.64538 0.08188 0.07984 
6046 501.489 503.584 0.2293 0.63093 0.07857 0.07654 
6047 501.497 503.834 0.2292 0.63069 0.07857 0.07654 
6048 501.482 504.069 0.2293 0.63046 0.07858 0.07655 
6049 501.500 504.352 0.2300 0.63019 0.07857 0.07653 
6050 501.482 504.618 0.2307 0.62993 0.07834 0.07630 
6051 501.361 503.455 0.2316 0.63107 0.07865 0.07663 
6052 501.373 503.707 0.2319 0.63082 0.07862 0.07659 
6053 501.380 503.969 0.2321 0.63057 0.07857 0.07654 
6054 501.361 504.216 0.2322 0.63033 0.07861 0.07657 
6055 501.365 504.503 0.2324 0.63005 0.07850 0.07646 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

7001 545.383 546.851 67.4191 0.70986 0.10481 0.10239 
7002 545.381 547.018 67.4082 0.70977 0.10458 0.10217 
7003 545.381 547.197 67.4029 0.70968 0.10478 0.10236 
7004 545.388 547.394 67.3987 0.70959 0.10451 0.10209 
7005 545.383 547.581 67.3945 0.70950 0.10451 0.10209 
7006 545.396 546.916 56.9830 0.69905 0.10122 0.09880 
7007 545.399 547.094 56.9839 0.69896 0.10133 0.09884 
7008 545.415 547.292 56.9840 0.69886 0.10130 0.09882 
7009 545.421 547.490 56.9823 0.69876 0.10119 0.09870 
7010 545.424 547.695 56.9813 0.69866 0.10093 0.09845 
7011 545.430 546.986 50.3613 0.69148 0.09904 0.09652 
7012 545.456 547.191 50.3670 0.69138 0.09868 0.09617 
7013 545.449 547.372 50.3813 0.69131 0.09868 0.09617 
7014 545.452 547.570 50.3948 0.69122 0.09849 0.09597 
7015 545.465 547.792 50.4064 0.69112 0.09848 0.09596 
7016 545.436 547.031 43.2920 0.68268 0.09594 0.09340 
7017 545.441 547.220 43.2966 0.68258 0.09597 0.09342 
7018 545.459 547.431 43.2993 0.68247 0.09606 0.09351 
7019 545.453 547.630 43.2938 0.68236 0.09583 0.09328 
7020 545.467 547.860 43.2682 0.68220 0.09572 0.09316 
7021 545.442 547.089 36.1910 0.67288 0.09311 0.09053 
7022 545.438 547.270 36.1943 0.67278 0.09306 0.09048 
7023 545.459 547.493 36.1931 0.67265 0.09311 0.09053 
7024 545.476 547.716 36.1896 0.67252 0.09302 0.09043 
7025 545.475 547.936 36.1673 0.67236 0.09310 0.09051 
7026 545.426 547.138 27.3687 0.65893 0.08951 0.08689 
7027 545.457 547.363 27.3756 0.65880 0.08939 0.08677 
7028 545.461 547.573 27.3780 0.65867 0.08948 0.08685 
7029 545.461 547.790 27.3805 0.65854 0.08949 0.08686 
7030 545.451 548.008 27.3644 0.65838 0.08935 0.08672 
7031 545.426 547.197 20.5868 0.64631 0.08607 0.08344 
7032 545.435 547.411 20.5896 0.64617 0.08596 0.08333 
7033 545.445 547.635 20.5911 0.64602 0.08623 0.08359 
7034 545.458 547.874 20.5770 0.64583 0.08622 0.08357 
7035 545.464 548.116 20.5600 0.64563 0.08582 0.08318 
7036 545.430 547.256 14.7485 0.63351 0.08344 0.08078 
7037 545.419 547.460 14.7549 0.63337 0.08307 0.08042 
7038 545.421 547.681 14.7604 0.63322 0.08312 0.08047 
7039 545.443 547.939 14.7656 0.63304 0.08298 0.08033 
7040 545.454 548.197 14.7698 0.63286 0.08289 0.08024 
7041 545.420 547.317 9.6654 0.62017 0.08041 0.07776 
7042 545.436 547.555 9.6709 0.61999 0.08001 0.07736 
7043 545.429 547.775 9.6760 0.61982 0.08008 0.07743 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

7044 545.443 548.028 9.6803 0.61962 0.08002 0.07737 
7045 545.431 548.272 9.6840 0.61943 0.07993 0.07728 
7046 545.426 547.321 9.6400 0.62009 0.08019 0.07754 
7047 545.444 547.557 9.6388 0.61989 0.08005 0.07741 
7048 545.450 547.789 9.6465 0.61972 0.08001 0.07736 
7049 545.441 548.021 9.6550 0.61955 0.07992 0.07727 
7050 545.443 548.279 9.6619 0.61936 0.07996 0.07731 
7051 545.412 547.356 6.0392 0.60874 0.07802 0.07537 
7052 545.410 547.578 6.0433 0.60855 0.07787 0.07523 
7053 545.435 547.836 6.0470 0.60832 0.07782 0.07518 
7054 545.447 548.093 6.0494 0.60810 0.07781 0.07516 
7055 545.437 548.348 6.0515 0.60787 0.07772 0.07507 
7056 545.420 547.422 2.8458 0.59656 0.07562 0.07300 
7057 545.406 547.635 2.8430 0.59633 0.07567 0.07304 
7058 545.436 547.907 2.8335 0.59601 0.07563 0.07300 
7059 545.426 548.151 2.8249 0.59572 0.07552 0.07289 
7060 545.435 548.429 2.8180 0.59541 0.07561 0.07297 
7061 544.931 546.966 1.0907 0.58916 0.07449 0.07188 
7062 544.952 547.222 1.0966 0.58891 0.07427 0.07167 
7063 544.962 547.477 1.1018 0.58864 0.07425 0.07164 
7064 544.946 547.716 1.1060 0.58840 0.07416 0.07155 
7065 544.966 548.006 1.1101 0.58809 0.07411 0.07150 
8001 605.887 608.009 15.0088 0.58786 0.08163 0.07782 
8002 605.896 608.232 15.0091 0.58769 0.08181 0.07800 
8003 605.889 608.454 15.0098 0.58751 0.08170 0.07789 
8004 605.885 608.687 15.0109 0.58733 0.08183 0.07800 
8005 605.901 608.954 15.0124 0.58713 0.08171 0.07788 
8006 605.901 607.571 68.9229 0.68401 0.10529 0.10169 
8007 605.902 607.754 68.9080 0.68391 0.10525 0.10165 
8008 605.908 607.937 68.9000 0.68382 0.10510 0.10151 
8009 605.907 608.117 68.9029 0.68375 0.10520 0.10160 
8010 605.919 608.329 68.9171 0.68367 0.10508 0.10147 
8011 605.970 607.725 54.3640 0.66635 0.10000 0.09631 
8012 605.986 607.920 54.3665 0.66626 0.09978 0.09610 
8013 605.988 608.114 54.3508 0.66614 0.09956 0.09588 
8014 606.003 608.325 54.3318 0.66602 0.09998 0.09592 
8015 606.015 608.541 54.3142 0.66589 0.09958 0.09588 
8016 605.989 607.838 41.3265 0.64724 0.09465 0.09090 
8017 605.993 608.034 41.3139 0.64711 0.09458 0.09082 
8018 606.000 608.237 41.3159 0.64701 0.09446 0.09071 
8019 606.011 608.454 41.3281 0.64691 0.09431 0.09056 
8020 606.012 608.674 41.3388 0.64681 0.09443 0.09067 
8021 605.989 607.926 30.8369 0.62830 0.08999 0.08619 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

8022 605.992 608.130 30.8407 0.62819 0.08988 0.08609 
8023 605.990 608.336 30.8421 0.62807 0.08997 0.08617 
8024 606.013 608.574 30.8294 0.62790 0.08990 0.08609 
8025 606.003 608.792 30.8140 0.62774 0.08990 0.08609 
8026 605.958 607.983 22.9257 0.61062 0.08607 0.08226 
8027 605.969 608.201 22.9273 0.61048 0.08601 0.08220 
8028 605.985 608.430 22.9169 0.61030 0.08592 0.08211 
8029 606.005 608.681 22.9027 0.61010 0.08573 0.08192 
8030 606.010 608.922 22.8928 0.60991 0.08586 0.08204 
8031 605.986 608.109 15.2320 0.58853 0.08187 0.07806 
8032 605.986 608.326 15.2214 0.58832 0.08187 0.07805 
8033 605.996 608.564 15.2123 0.58811 0.08167 0.07785 
8034 606.009 608.814 15.2060 0.58789 0.08165 0.07783 
8035 606.007 609.062 15.2004 0.58768 0.08166 0.07783 
8036 605.901 608.103 10.2436 0.56965 0.07862 0.07483 
8037 605.927 608.356 10.2371 0.56939 0.07862 0.07482 
8038 605.918 608.579 10.2284 0.56915 0.07841 0.07462 
8039 605.931 608.846 10.2215 0.56888 0.07834 0.07455 
8040 605.961 609.137 10.2159 0.56859 0.07840 0.07459 
8041 605.890 608.158 6.9713 0.55351 0.07621 0.07245 
8042 605.923 608.426 6.9734 0.55324 0.07619 0.07242 
8043 605.937 608.680 6.9744 0.55298 0.07616 0.07239 
8044 605.936 608.936 6.9695 0.55269 0.07625 0.07247 
8045 605.944 609.210 6.9636 0.55237 0.07608 0.07230 
8046 605.898 608.242 4.1257 0.53490 0.07371 0.07000 
8047 605.903 608.483 4.1296 0.53463 0.07451 0.07076 
8048 605.907 608.736 4.1333 0.53434 0.07388 0.07016 
8049 605.881 608.974 4.1364 0.53406 0.07380 0.07007 
8050 605.915 609.279 4.1394 0.53370 0.07371 0.06998 
8051 605.854 608.251 2.1312 0.51694 0.07215 0.06849 
8052 605.878 608.520 2.1330 0.51655 0.07215 0.06849 
8053 605.885 608.783 2.1344 0.51616 0.07198 0.06832 
8054 605.881 609.047 2.1350 0.51575 0.07183 0.06817 
8055 605.889 609.336 2.1321 0.51527 0.07174 0.06809 
8056 605.824 608.259 1.1099 0.50456 0.07062 0.06705 
8057 605.825 608.509 1.1098 0.50411 0.07066 0.06708 
8058 605.858 608.804 1.1085 0.50355 0.07060 0.06701 
8059 605.832 609.047 1.1080 0.50310 0.07092 0.06731 
8060 605.839 609.340 1.1078 0.50256 0.07090 0.06729 
9006 647.900 649.976 12.5113 0.54280 0.07897 0.07423 
9007 647.882 650.176 12.5159 0.54265 0.07885 0.07411 
9008 647.875 650.394 12.5162 0.54246 0.07873 0.07400 
9009 647.888 650.643 12.5153 0.54223 0.07871 0.07398 
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Table 10. Thermal conductivity of liquid RP-1. 
Point ID T0 

(K) 
Te 

(K) 
Pe 

(MPa) 

ρe 
(g·cm-3) 

λe 
(W·m-1K-1) 

λc 
(W·m-1K-1) 

9010 647.862 650.862 12.5150 0.54204 0.07855 0.07381 
9011 647.288 648.869 68.7755 0.66590 0.10489 0.10039 
9012 647.299 649.038 68.7679 0.66582 0.10444 0.09990 
9013 647.277 649.189 68.7776 0.66577 0.10447 0.09998 
9014 647.275 649.365 68.7887 0.66570 0.10432 0.09977 
9015 647.279 649.550 68.7983 0.66564 0.10469 0.10013 
9016 647.084 648.793 47.5140 0.63622 0.09659 0.09192 
9017 647.119 649.006 47.5050 0.63610 0.09648 0.09180 
9018 647.120 649.193 47.4964 0.63599 0.09610 0.09144 
9019 647.125 649.390 47.4906 0.63588 0.09630 0.09162 
9020 647.138 649.601 47.4928 0.63578 0.09612 0.09145 
9021 646.936 648.790 30.9474 0.60426 0.08905 0.08433 
9022 646.946 648.983 30.9604 0.60417 0.08922 0.08448 
9023 646.931 649.165 30.9726 0.60410 0.08918 0.08444 
9024 646.923 649.366 30.9838 0.60400 0.08903 0.08429 
9025 646.936 649.599 30.9946 0.60389 0.08906 0.08431 
9026 646.823 648.804 19.8446 0.57356 0.08326 0.07853 
9027 646.825 649.005 19.8431 0.57341 0.08343 0.07869 
9028 646.832 649.225 19.8429 0.57326 0.08322 0.07848 
9029 646.832 649.447 19.8457 0.57311 0.08314 0.07841 
9030 646.839 649.688 19.8528 0.57296 0.08307 0.07834 
9031 646.565 648.662 12.4149 0.54348 0.07850 0.07382 
9032 646.581 648.893 12.4166 0.54328 0.07853 0.07385 
9033 646.586 649.124 12.4191 0.54309 0.07844 0.07375 
9034 646.575 649.349 12.4242 0.54292 0.07845 0.07376 
9035 646.551 649.569 12.4331 0.54277 0.07843 0.07374 
9036 646.212 648.432 7.3542 0.51194 0.07428 0.06971 
9037 646.207 648.654 7.3563 0.51170 0.07453 0.07018 
9038 646.206 648.890 7.3593 0.51145 0.07435 0.06978 
9039 646.211 649.144 7.3632 0.51119 0.07437 0.06978 
9040 646.201 649.394 7.3687 0.51095 0.07437 0.06978 
9041 645.805 648.101 4.6461 0.48546 0.07235 0.06785 
9042 645.818 648.348 4.6503 0.48514 0.07242 0.06791 
9043 645.846 648.627 4.6544 0.48477 0.07227 0.06777 
9044 645.856 648.894 4.6581 0.48442 0.07234 0.06783 
9045 645.875 649.180 4.6613 0.48403 0.07284 0.06828 
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7. Viscosity 

7.1 Viscosity at Atmospheric Pressure 
 
The kinematic viscosities (ν) of the RP-1 samples were measured at atmospheric pressure 

(approximately 83 kPa) by open gravitational capillary viscometry. With this technique, the time 

(t) required for a given volume of the liquid to flow through a calibrated capillary under the 

influence of gravity was measured. The flow time is proportional to the kinematic viscosity: 

ν = C⋅t, 

where the proportionality constant, C, is determined by calibrating the capillary with standard 

reference liquids. The absolute viscosity (η) can be determined from the kinematic viscosity if the 

density (ρ) of the liquid is known: 

η = ν⋅ρ. 

For these measurements we used the procedure outlined in ASTM method D 445 – 03; 

however, instead of averaging two determinations of the kinematic viscosity, at least eight 

determinations were averaged for each entry in Table 11. Commercially obtained Ubbelohde 

capillary viscometers were used for all the measurements. The capillary viscometers were 

calibrated at NIST using commercially obtained standard reference liquids. The calibration 

constant, C, for each capillary was found to be within the stated uncertainty of the manufacturer’s 

calibration constant. During a measurement, the viscometers were immersed in an insulated, 

continuously stirred bath (ethylene glycol + water) whose temperature was maintained with a 

refrigerated circulator, an electric heater, and a precision temperature controller. The bath 

temperature was measured with an ITS-90 calibrated platinum resistance thermometer accurate to 

±0.01 K. Flow times were measured automatically. 
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With this apparatus, the expanded uncertainty in the kinematic viscosity is estimated to be 

1 % (k = 2). The primary contribution to the uncertainty is the 0.5 % standard uncertainty in C, 

which results in a 0.5 % standard uncertainty in the kinematic viscosity. Including fluctuations and 

temperature gradients, the uncertainty in the temperature is estimated to be 0.02 K, which leads to 

a negligible standard uncertainty in the kinematic viscosity of ≤0.074 %. The Hagenbach (kinetic 

energy) correction was ≤0.13 %, so it was also neglected. The uncertainty in the flow time 

measurement also leads to a negligible standard uncertainty of about 0.01 % in the kinematic 

viscosity. Since the RP-1 samples are hydrocarbon-based, no correction was necessary to account 

for the difference in surface tension between the hydrocarbon-based calibration liquids and the test 

samples. 

Kinematic viscosities were measured as a function of temperature for four RP-1 samples. 

The first sample was the original sample of RP-1 (acquired May 2003, designated by batch number 

P000016660,) which has anomalously high olefin (unsaturated hydrocarbon) content. Viscosities 

were measured from 243.29 K to 333.15 K (approximately –30 ºC to 60 ºC). The kinematic 

viscosities of the other three samples—a second sample of normal grade RP-1 (acquired 

November 2004, designated 11/03), an ultra-low sulfur RP-1 (batch number not provided), and a 

TS-5 RP-1 (batch number not provided)—were measured only at 298.15 K (25 ºC) and 313.15 K 

(40 ºC). All of these data are collected in Table 11. At some temperatures the kinematic viscosity 

of the original sample of RP-1 was determined multiple times using different aliquots of that 

sample. Such independent determinations are listed separately in Table 11. 

Figure 7(a) shows a graph of the kinematic viscosity as a function of temperature for the 

original sample of RP-1. Figure 7(b) shows an Arrhenius plot of the same data with a correlation to 

a modified Arrhenius equation of the form, 
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ln(ν) = A + B(1/T) + C(1/T)2 + D(1/T)3,      (1) 

where A, B, C, and D are constants and T is the temperature in kelvins. A regression analysis gave 

the following values for the coefficients: A = −7.812, B = 5.530 × 103, C = −1.503 × 106, and D = 

1.801 × 108. Figure 7(c) shows the percent deviation of the measured kinematic viscosities from 

the correlation given in Eq. (1). All of the data points are within 1.1 % of Eq. (1). 

Figure 8 shows the percent deviation of the kinematic viscosities of the three other rocket 

propellant samples compared to the correlation of the data for the original sample of RP-1, Eq. (1). 

The error bars in Figure 8 correspond to the repeatability of the measurements at the 2-sigma level, 

not to the total uncertainty in the measurement. Figure 8 shows that the viscosities for the second 

RP-1 sample, the TS-5 sample and the ultra-low sulfur sample are all about 7 to 10 % higher than 

the correlation at 298.15 K and 313.15 K. Hence, capillary viscosity measurements easily 

distinguish all three of these samples from the original sample of RP-1. The second RP-1 sample is 

also distinguishable from the TS-5 and the ultra-low sulfur samples. However, the viscosities of 

the TS-5 and the ultra-low sulfur samples cannot be distinguished with this apparatus. 

These measurements show that the anomalous composition of the original sample of RP-1 

results in a significant change in the viscosity behavior of that sample compared to a “normal” 

RP-1 sample whose composition is on specification. Consequently, these data provide strong 

motivation for additional measurements on a “normal” RP-1 sample. These measurements also 

show that the two low-sulfur versions of RP-1 are significantly different from normal grade RP-1. 

Hence, accurate models of such low-sulfur rocket propellants will require separate viscosity 

measurements. 
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Table 11.  Experimental kinematic viscosities (ν) for four RP-1 samples. 

 Temperature / K ν / (mm2·s−1) 
 

Capillary used 
 

Original sample of RP-1 
(acquired 05/03, P000016660) 

243.29 
243.93 
248.15 
248.16 
253.15 
258.15 
263.15 
263.15 
268.15 
273.15 
278.15 
283.15 
288.15 
288.15 
293.15 
293.15 
298.15 
298.15 
298.15 
298.15 
298.15 
298.15 
298.15 
303.15 
308.15 
313.15 
323.15 
333.15 

 

7.667 
7.431 
6.530 
6.368 
5.369 
4.601 
4.027 
3.990 
3.496 
3.093 
2.758 
2.479 
2.242 
2.255 
2.053 
2.040 
1.867 
1.870 
1.867 
1.875 
1.878 
1.880 
1.865 
1.723 
1.591 
1.475 
1.282 
1.126 

 

I 
I* 
I 
I* 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0b 
0b 
I 
I 
I 
I 

0b 
0b 
0b 
I* 
0b 
0b 
0b 
0b 
0b 

Second sample of RP-1 
(acquired 11/03) 

298.15 
313.15 

 

2.0214 
1.5768 

 

0b 
0b 

Ultra-low sulfur RP-1 298.15 
313.15 

 

2.0491 
1.5968 

 

0b 
0b 

TS-5 RP-1 298.15 
313.15 

2.0581 
1.6021 

0b 
0b 

 
* These values were determined with a second capillary viscometer of size I. 
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Figure 7.  (a) Kinematic viscosity of the original sample of RP-1 as a function of temperature; (b) 
Arrhenius plot of the same data; solid curve is correlation; (c) deviations of kinematic viscosity 
from the correlation. 
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Figure 8.  Percent deviations of the kinematic viscosities of three rocket propellant samples 
compared to the correlation of the kinematic viscosities for the original sample of RP-1. 

 
7.2 Viscosity at Elevated Pressures 
 

The viscosity of RP-1 kerosene was measured at elevated pressures up to 65.7 MPa with a 

torsional crystal viscometer by mechanical spectroscopy in the frequency domain. Three 

isotherms were measured, two of which were near room temperature to validate the repeatability 

of the instrument, and one was at 400 K. Table 12 presents the results of the measurements 

numerically, while the pressure dependence is shown in Figure 9. 

Before introducing the sample fluid with a pressure generator, the viscometer was 

evacuated for three days. The internal damping of the torsional crystal transducer was measured in 

vacuo at room temperature prior to the RP-1 measurements. The transducer performance was 

consistent with the long-term results measured during the last decade. The pressure generator was 

cleaned with toluene and evacuated for 24 h before it was filled with RP-1. 
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After charging the cell with RP-1, the quartz crystal viscosity transducer indicated no 

increase of the measured conductance. The susceptance rose by about 6 microsiemens (µS) over 

its vacuum level. This is a typical increase for dense hydrocarbons. It is much lower than values 

observed with hydrofluorocarbons. These observations indicate the presence of no polar 

impurities in the sample fluid that might have caused electroviscous contributions in the measured 

viscosity data. 

Each line in Table 12 represents an average of four measurements, except the line at 5.5 

MPa, which is based on only three measurements. The columns with the experimental data are 

followed by columns with their absolute and relative standard deviations. Included are columns 

with the averaged resonance frequencies f* and bandwidths ∆f, which are the original 

experimental information. The product (viscosity × density) rather than the absolute viscosity is 

shown because measurements with this viscometer yield this product and the density needs to be 

supplied either from other measurements or from correlations or equations of state to obtain the 

viscosity. The pressure dependence of the measured (viscosity × density) results is illustrated in 

Figure 9. 

The uncertainty of the pressure transducer is estimated at 0.01 MPa, while the uncertainty 

of the measured temperatures is estimated to be 0.05 K. The typical uncertainty of the (viscosity × 

density) results measured with this instrument is 2 %. However, the RP-1 measurements were 

conducted at the resolution limit of the impedance analyzer, so that higher uncertainties were 

incurred. These will be discussed below. The internal damping of the vibrating crystal was not 

accounted for in the data analysis at room temperature because the bandwidth in vacuo (0.08 Hz) is 

at most only 0.01 % of the bandwidths of the resonances in the kerosene sample. The internal 

damping was included in the analysis of the data at 400 K. 
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Figure 10 compares the viscosities derived from Table 12 with viscosities calculated with 

the model that was developed in this project. The figure displays percent deviations of the 

experimental viscosities relative to those calculated with the model as a function of pressure. The 

deviations range between −3.5 % at 400 K and 0.1 MPa and −11.7 % at 295 K and 41.5 MPa. 

Consequently, the model predicts higher viscosities than those measured. Given the complexity of 

the surrogate mixture, the agreement between the model and the measured data can be considered 

satisfactory. This is supported by a consideration of the uncertainties of the experimental data. 

They were assessed by calculating the change in the viscosity due to a change in the measured 

bandwidth ∆f resulting from the resolution of the impedance analyzer of ±0.01 Hz. The 

uncertainties are indicated in Figure 10 by horizontal bars above and below the data points at the 

highest and at the lowest pressure. The highest uncertainties of the viscosity data occur at the 

highest pressures due to the flatness of the resonance curves at high external damping of the 

torsionally vibrating crystal. While the measurement at the highest pressure of Series 2 at 296 K is 

9.2 % lower than the viscosity predicted by the model, the uncertainty of the measurement due to 

the impedance analyzer resolution of ±0.1 Hz results in a deviation interval from −15 % to −0.3 %. 

This puts the deviations between the experimental and the calculated model data in perspective. 
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Table 12. Results of viscosity measurements at elevated pressures. 
_____________________________________________________________________________________ 

Pexp Texp f* sf* ∆f s∆f η×ρ sη·ρ sη/ η 
MPa K  Hz Hz Hz Hz    kg2·m-4·s Hz % 

_____________________________________________________________________________ 
 
65.7032 295.23 39479.7920 1.5476 91.0156 0.8436 2.5287 0.047 1.85 
63.6221 295.37 39480.1843 1.8560 90.1313 2.0625 2.4804 0.115 4.62 
51.1380 295.57 39481.1876 1.0860 84.1500 0.7194 2.1606 0.037 1.71 
41.5231 295.68 39486.1139 1.2056 78.2529 0.6358 1.8676 0.030 1.63 
31.5127 295.78 39486.6795 0.6816 74.3371 1.1402 1.6851 0.052 3.07 
21.5319 295.91 39489.3690 1.0328 70.5069 0.2671 1.5151 0.011 0.76 
11.3880 297.23 39491.8394 0.6729 64.9280 0.0320 1.2843 0.001 0.10 
5.54529 297.22 39491.4181 0.9675 62.9383 0.3212 1.2066 0.012 1.02 
1.16686 297.30 39493.5601 0.3737 61.0921 0.8900 1.1368 0.033 2.91 
0.1190 297.31 39491.6728 0.6652 60.6646 0.4787 1.1209 0.018 1.58 
 
67.3416 296.12 39479.8022 2.7331 90.4688 0.8398 2.4985 0.046 1.86 
60.7903 296.22 39481.3354 2.1428 87.7083 0.4166 2.3477 0.022 0.95 
49.5042 296.27 39483.3182 0.8905 82.9125 1.1698 2.0974 0.059 2.83 
40.0488 297.12 39485.5269 1.4492 77.4432 0.6889 1.8290 0.032 1.77 
29.8420 297.14 39489.1896 1.5698 72.6040 0.2903 1.6069 0.013 0.80 
20.1337 297.25 39490.8163 0.9642 68.7578 0.9207 1.4408 0.039 2.69 
10.1259 297.29 39490.7615 1.5726 64.4845 0.7253 1.2669 0.029 2.25 
5.0746 297.36 39490.9510 1.3958 62.7792 0.2912 1.2005 0.011 0.93 
1.2191 297.38 39493.5878 1.4182 61.1579 0.5500 1.1392 0.020 1.79 
0.1984 297.42 39493.9507 1.3361 60.6076 0.3710 1.1187 0.014 1.23 
 
68.1731 400.08 39508.6993 1.1045 45.1800 0.2298 0.6202 0.006 1.01 
60.0641 400.06 39510.1366 0.6027 43.8570 0.3088 0.5842 0.008 1.41 
50.2712 400.07 39509.5068 0.6400 42.1027 0.1064 0.5383 0.003 0.50 
39.8690 400.04 39510.9737 0.5615 39.9416 0.2524 0.4843 0.006 1.26 
29.4055 400.06 39511.1211 0.2013 37.7958 0.1313 0.4335 0.003 0.69 
19.4202 400.06 39511.9547 0.2073 35.9434 0.2801 0.3919 0.006 1.56 
10.1350 400.06 39512.9821 0.0000 33.6950 0.0272 0.3443 0.001 0.16 
5.0553 400.04 39513.4951 0.0008 32.6561 0.0621 0.3234 0.001 0.38 
1.0233 400.06 39512.7072 1.0937 31.8197 0.1076 0.3070 0.002 0.68 
0.1008 399.07 39512.7240 1.0627 31.7850 0.1672 0.3063 0.003 1.05 
_____________________________________________________________________________ 
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Figure 9. (Viscosity × density) product of RP-1 at elevated pressures measured in the torsional 

crystal viscometer at room temperature and at 400 K. 
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Figure 10. Percent deviations of the measured viscosities of RP-1 at elevated pressures from the 

model for the surrogate mixture. 
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8.  Project Workshop at NIST Boulder on December 11, 2003 
 

On December 11, 2003, the Physical and Chemical Properties Division of CSTL hosted a 

project workshop at the Boulder campus of NIST on the thermophysical properties of the rocket 

propellant designated RP-1. Specialists in rocket fuels (from NASA, the U.S. Air Force, 

commercial rocket engine manufacturers, and academia) convened with NIST researchers to hear 

about recent NIST work conducted to help better define the properties of this fuel and to plan 

future activities required to achieve consensus standards for the properties of fuels over the broad 

ranges of conditions encountered in their use. 

NIST researchers reported new, high sensitivity compositional characterizations of RP-1 

fuels and new metrological quality property results for density, viscosity, heat capacity, and 

thermal conductivity with temperatures extending beyond a decomposition limit (near 600 K) and 

pressures to about 70 MPa. These data were used to establish accurate preliminary property 

surfaces for this complex fluid. A software implementation of the preliminary models was 

delivered to NASA engineers and their contractors for testing and to assist in the resolution of 

current engine design problems. Participants in the workshop, listed in Table 13, were eager to use 

the current results, and were very interested in continued NIST efforts to explore the effects of 

sample-to-sample variation and refined processing methods on fuel properties, to help establish 

new protocols for fuel characterization, and to expand the range of conditions and properties. 
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Table 13.  Participants in NIST Rocket Propellant Workshop. 

NASA 
 

Dr. Kendall  Brown 
NASA/MSFC/TD51 
Liquid Engine Systems 
Mail Code TD51 
Marshall Space Flight Center, AL  35812 
Email: kendall.k.brown@nasa.gov  
Phone: (256) 544-5938 
Fax: (256) 544-5876 
 
Mr. Larry  de Quay 
NASA/SSC/VA305 
Propulsion Test Division, Systems Analysis 
Branch 
Mail Code VA305 
Stennis Space Center, MS 
Email: larry.dequay-1@nasa.gov  
Phone: (228) 688-1956 
Fax: (228) 688-1485 
 
Mr. Darrell  Gaddy 
NASA/MSFC/ED25 
Thermal Analysis 
Mail Code ED25 
Marshall Space Flight Center, AL  35812 
Email: Darrell.E.Gaddy@nasa.gov  
Phone: (256) 544-0198 
Fax:  
 
Mr. Van  Loung 
NASA/MSFC/ED25 
Thermal Analysis 
Mail Code ED25 
Marshall Space Flight Center, AL  35812 
Email: Van.Luong-1@nasa.gov  
Phone: (256) 544-3070 
Fax:  

 
Mr. Mike  Martin 
NASA/MSFC/TD53 
Performance Modeling 
Mail Code TD53 
Marshall Space Flight Center, AL  35812 
Email: michael.a.martin@nasa.gov  
Phone: (256) 544-4478 
Fax:  
 
Mr. Mike  Meyer 
NASA/GRC 
21000 Brookpark Road 
Cleveland, OH  44135 
Email: michael.l.meyer@nasa.gov  
Phone: (216) 977-7492 
Fax:  
 
Mr. Joe  Sims 
NASA/MSFC/TD61 
Combustion Devices 
Mail Code TD61 
Marshall Space Flight Center, AL  35812 
Email: Joseph.D.Sims@nasa.gov  
Phone: (256) 544-4650 
Fax:  
 
Dr. Jeff  West 
NASA/MSFC/TD64 
CFD 
Mail Code TD64 
Marshall Space Flight Center, AL  35812 
Email:  
Phone: (256) 544-6309 
Fax: 

 
 

Industry Partners 
 
Mr. Tom  Crofoot 
Northrop Grumman Space Technology 
Chemistry Technology Department 
One Space Park/BldO1 Rm2020/ 
Redondo Beach, CA 90278 
Email: tom.crofoot@ngc.com  
Phone: (310) 813-4623 
Fax:  
 
 
 

Mr. Dave  Ewing 
Rocketdyne 
Performance Modeling 
6633 Canoga Park Ave.; P.O. Box 7922 
Canoga Park, CA  91309-7922 
Email:  
Phone: (818) 586-0350 
Fax:  
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Dr. He  Huang 
United Technologies Research Center 
Thermal Mgt 
MS 129-29, 411 Silver Lane, 
East Hartford, CT 06108 
Email: HuangH@utrc.utc.com  
Phone: (860) 610-7594 
Fax: (880) 660-1178 
 
Mr. Mike  Krene 
Rocketdyne 
TCA IPT Lead 
6633 Canoga Park Ave.; P.O. Box 7922 
Canoga Park, CA  91309-7922 
Email:  
Phone: (818) 360-2321 
Fax:  
 
Mr. Herb  Lander 
Rocketdyne 
Hydrocarbon Fuel Analyst 
1964 W. Wide River Dr. 
St. George, UT 84790 
Email: JP10fuel@aol.com  
Phone: (435) 673-4323 
Fax:  
 
Mr. Buzz  Laning 
Lockheed Martin Corporation 
Vehicle MPS 
DC3006; P.O. Box 179 
Denver, Colorado 80201 
Email: buzz.lanning@lmco.com  
Phone: 303) 971-9390 
Fax:  
 

Mr. Dennis  Lim 
Rocketdyne 
TCA Design 
6633 Canoga Park Ave.; P.O. Box 7922 
Canoga Park, CA  91309-7922 
Email:  
Phone: (818) 586-0422 
Fax:  
 
Mr. Skip  Urquhart 
Pratt & Whitney 
RBCC 
P.O. Box 109600, M/S 712-67 
West Palm Beach, Fl. 33410-9600 
Email: james.urquhart@pw.utc.com  
Phone: (561) 796-9706 
Fax:  
 
Mr. Brian  Wherley 
Rocketdyne 
TCA IPT Sub-lead 
6633 Canoga Park Ave., P.O. Box 7922 
Canoga Park, CA  91309-7922 
Email:  
Phone: (818) 586-1785 
Fax:  
 
Mr. Peter  Zeender 
Chemical Propulsion Information Agency 
Properties Documentation 
10630 Little Patuxent Parkway, Suite 202 
Columbia, MD 21044 
Email: pzeender@cpia.jhu.edu  
Phone: (410) 992-9950 x205 
Fax:

 
 

University Partners 
 
Dr. Brian  Landrum 
University of Alabama Huntsville 
Professor 
Technology Hall, S-227, Univ of Alabama in 
Huntsville 
Huntsville, Al  35899 
Email: landrum@mae.uah.edu  
Phone: (256) 824-7207 
Fax:  

 
Mr. Ben  Stiegemeier 
University of Toledo 
21000 Brookpark Road 
Cleveland, OH  44135 
Email: ben.steigemeier@grc.nasa.gov  
Phone: (216) 433-8242 
Fax: 
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Military Partners 
 
Dr. Tim  Edwards 
Air Force Research Laboratory 
Propulsion Directorate 
Wright-Patterson AFB, OH 
Email: james.edwards@wpafb.af.mil  
Phone: (937) 255-3524 
Fax:  
 

NIST Staff 
 
Dr. Thomas  Bruno 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.00 
Boulder, CO 80305-3328 
Email: bruno@boulder.nist.gov  
Phone: (303) 497-5158 
Fax: (303) 497-5224 
 
 
Dr. Rob  Chirico 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.00 
Boulder, CO 80305-3328 
Email: chirico@boulder.nist.gov  
Phone: (303) 497-4126 
Fax: (303) 497-5224 
 
Dr. Michael  Frenkel 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838 
Boulder, CO 80305-3328 
Email: frenkel@boulder.nist.gov  
Phone: (303) 497-3952 
Fax: (303) 497-5224 
 
Dr. Daniel  Friend 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838 
Boulder, CO 80305-3328 
Email: dfriend@boulder.nist.gov  
Phone: (303) 497-5424 
Fax: (303) 497-5044 
 
Dr. Marcia  Huber 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.08 
Boulder, CO 80305-3328 
Email: huber@boulder.nist.gov  
Phone: (303) 497-5252 
Fax: (303) 497-5224 
 

Dr. Arno  Laesecke 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: laesecke@boulder.nist.gov  
Phone: (303) 497-3197 
Fax: (303) 497-5224 
 
Dr. Eric  Lemmon 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.08 
Boulder, CO 80305-3328 
Email: ericl@boulder.nist.gov  
Phone: (303) 497-7939 
Fax: (303) 497-5224 
 
Dr. Joseph  Magee 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: magee@boulder.nist.gov  
Phone: (303) 497-3298 
Fax: (303) 497-3441 
 
Dr. Jeffrey  Manion 
NIST Physical & Chemical Properties Division 
100 Bureau Drive, Stop 8381 
Gaithersburg, MD  20899-8381 
Email: jeffrey.manion@nist.gov  
Phone: (301) 975-3188 
Fax:  
 
Dr. Mark  McLinden 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: mclinden@boulder.nist.gov  
Phone: (303) 497-3580 
Fax: (303) 497-5224 
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Dr. Richard  Perkins 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: perkins@boulder.nist.gov  
Phone: (303) 497-5499 
Fax: (303) 497-5224 
 

Dr. Jason  Widegren 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: widegren@boulder.nist.gov  
Phone: (303) 497-5207 
Fax: (303) 497-5224 

 
NIST Guests 

 
Mr. Aziz  Abdulagatov 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: aziz@boulder.nist.gov  
Phone: (303) 497-3716 
Fax: (303) 497-5224 
 
Dr. Ilmutdin  Abdulagatov 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: Ilmutdin@boulder.nist.gov  
Phone: (303) 497-4027 
Fax: (303) 497-5224 
 
Dr. Peter  Andersen 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838 
Boulder, CO 80305-3328 
Email: panderse@boulder.nist.gov  
Phone: (303) 497-5614 
Fax: (303) 497-5224 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dr. Jörg  Baranski 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: baranski@boulder.nist.gov  
Phone: (303) 497-3522 
Fax: (303) 497-5224 
 
Dr. Jesus  Sanchez Ochoa 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838.07 
Boulder, CO 80305-3328 
Email: jsanchez@boulder.nist.gov  
Phone: (303) 497-4167 
Fax: (303) 497-5224 
 
Mr. Hong-Wei  Xiang 
NIST Physical & Chemical Properties Division 
325 Broadway, MC 838 
Boulder, CO 80305-3328 
Email: hwxiang@boulder.nist.gov  
Phone: (303) 497-7752 
Fax: (303) 497-5224 
 



 

 74

9. Summary and Recommendations 

A combined experimental and modeling study was carried out to elucidate the behavior of key 

properties over wide ranges of temperature and pressure. An RP-1 sample provided by the Air 

Force Research Lab (Wright-Patterson AFB, OH) was chemically characterized. Thermophysical 

properties were then measured for this sample. The experimental results were used to develop a 

mixture model based on a representative surrogate mixture. The results of this study were 

presented for review and comments in the December 11, 2003 workshop attended by 

representatives of NASA, the U.S. Air Force and their contractors. 

 The anticipated impact of the knowledge of thermophysical properties developed in this 

study will be more efficient and cost-effective rocket engine systems that use the kerosene rocket 

propellant designated RP-1. For future work, it is recommend that the variation of RP-1 properties 

be systematically explored based on studies of RP-1 samples from different lots. This will help 

design engineers to better understand the effects of batch-to-batch variability on the 

thermophysical properties of RP-1, and thus to lead to a more flexible engine design that performs 

equally well with RP-1 from various distillation batches or vendors. In the longer term, it is 

recommended that the mixture property model developed here, and the approach used to obtain the 

model from accurate experimental measurements, be applied to other kerosene-type fuels that are 

widely used in jet aviation. This information is expected to enhance the design and performance 

characterization of jet engines, especially those that will see applications in supersonic flight 

where fuels encounter both high temperatures and pressures. 

_________________ 

Financial support for this project was provided by the NASA John H. Glenn Research 

Center. 
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Appendix A.  Discussion of Chemical Characterization 

A.1. Procedures 
 

A sample of RP-1 kerosene-based rocket propellant was presented for analysis.  The 

sample was drawn with a disposable pipette from a 5-gallon steel pail supplied by the Air Force 

Research Lab (designated P000016660). The liquid sample had a pale-red cast provided by a dying 

agent, and appeared to have the viscosity of a typical kerosene. The liquid had the characteristic 

kerosene odor. 

The sample was analyzed with a gas chromatography/mass spectrometry method. A 30 m 

capillary column with a 0.1 µm coating of 5 % phenyl polydimethyl siloxane was chosen as the 

stationary phase. This phase provides separations based upon boiling temperature and also the 

polarity of the solute. In this context, polarity also includes points of unsaturation or aromaticity on 

the solute molecule. The sample was injected via a syringe into a split/splitless injector set with a 

100 to 1 split ratio. The injector was operated at 350 °C and a constant head pressure of 69 kPa (10 

psig). The sample residence time in the injector was very short, thus the effect of sample exposure 

to this high temperature is expected to be minimal. The column was temperature programmed to 

provide complete and rapid elution with minimal loss of peak shape.  Initially, the temperature was 

maintained isothermally at 60 °C for 2 min, followed by a 2 °C /min ramp to 90 °C, followed by a 

10 °C /min ramp to 250 °C. Although the analysis was allowed to run for 40 min, all peaks were 

eluted after approximately 27 min. Mass spectra were collected for each peak from 15 to 550 

RMM (relative molecular mass) units. The areas under each peak were integrated with a 

commercial algorithm optimized to identify peaks that were at least an order of magnitude larger 

than the noise level. 
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A.2. Results 

Approximately 250 peaks can be discerned on the total ion chromatogram. Not all of these were 

chosen for integration, however. The integration protocol mentioned above selected only 70 peaks 

as exceeding the threshold peak width and intensity established for recognition. Of these, a subset 

was chosen for examination.  These were divided into four groups: 

First tier:  Peaks representing 2 % (mass/mass) or higher 

Second tier:  Peaks representing 1 % or higher 

Lights:  Peaks that elute very early 

Heavies:  Peaks that elute very late 

A few comments about the above categories are in order. First, the mass percents referred 

to are based on the assumption that all peaks have identical response factors. Thus, the mass 

percents obtained from the total ion chromatogram were recorded without calibration. To apply a 

calibration to the mass, one would have to make standard mixtures of each of the components of 

RP-1. Since we do not have all of the pure components to make up calibration mixtures, or the time 

and resources to do so, the only practical alternative was the assumption of equal response. What is 

the consequence of this assumption? 

In general, the total ion current, and therefore the intensity of the peaks on a total ion 

chromatogram, depends upon the number and intensity of the fragments produced by the 

constituents. A greater ion current will be produced by species that produce more fragments. Thus 

larger heavier species that produce a richer fragmentation pattern will tend to be over-represented 

in intensity on the total ion chromatogram. On the other hand, smaller, lighter species, which will 

produce a less rich fragmentation pattern, will be more efficiently carried into the source. The 

larger heavier ones will be more likely to adsorb on surfaces along the way, despite efforts to 
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prevent that. These two effects will cancel to some extent. In the case of RP-1, even the smaller 

molecules are reasonably rich in fragments. Therefore, the assumption of equal response factor is 

unlikely to be a major source of uncertainty. 

The terms heavy and light need some explanation. In this context, they refer only to the 

time that is required for the components producing the peaks to emerge from the column. Note 

however that the column is not a pure boiling point column. Thus, the last component out is not 

necessarily the heaviest in terms of RMM. Unsaturation will play a role in this as well. Thus, if 

components of lighter RMM emerge after components of heavier RMM, this is not a concern. 

Rather, this is expected. 

The constituents in the heavy category were not integrated for mass percent. This is 

because as the chromatogram proceeds, the peaks broaden and are less amenable to integration. 

Thus, to integrate these peaks, one needs a protocol different from that used with the earlier peaks. 

While this could have been done, there was no reason to do so for the purpose of this study. 

The components that have been identified represent 70 % of the total constituents of the 

RP-1 sample. Note that the dye is not among those materials identified. 

A.3. Identification of Components 

The ability to view the mass spectrum of each peak provides a great deal of insight into the 

identity of the constituent that produced it. It must be understood that it is not necessarily 

unequivocal, however. Not all peaks on a mass spectrum are created equally. Some are very 

instructive, some are ubiquitous, and some are distractions. The automated search routines that are 

available seek to match mass spectra with library file spectra. In all of these routines, match quality 

is determined by the intensity of a peak and also the m/e, or RMM value, of the fragment that the 

peak represents. Once a database routine finds a "match," it provides a quality factor based upon 
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the match up of these two parameters: intensity and m/e. A higher quality factor results from the 

match of a heavier and more intense m/e peak. An unfortunate consequence of the procedure is 

that very often, the highest quality factor matches are nonsense, and that the slate of matches that is 

produced is of matches unrelated chemically. For this reason, it is very rare for one to be able to 

have "the computer" find the matches for you. Rather, each mass spectrum will have to be 

interpreted individually, by hand. 

It is critical to correctly identify the parent ion packet on the mass spectrum, and make sure 

that the computer has done so properly. If the computer has failed to do so, it is time to ignore the 

computer and to start analyzing the mass spectrum. In 80 % of the spectra analyzed here, the 

software failed to properly identify the parent ion packet. In the tables shown in the text of this 

report, the quality factor is normalized to 100 and is referred to as the correlation coefficient. 

Sometimes a high number is obtained for this, sometimes not. Occasionally, the software will 

"identify" a compound and assign it a correlation coefficient of 90 (very high). Then, upon looking 

at the spectrum, it is apparent that the match is 200 m/e units heavier than the compound being 

matched. The parent ion packed was misidentified by the computer, leading the operator "down the 

garden path." It is always possible to calculate the correlation coefficient, however, even if it is 

meaningless. In these instances, one must scroll through the spectrum until the correct pattern is 

recognized. Thus, even when a relatively low quality factor is obtained, the identification may be 

very certain. It becomes a matter of ignoring the m/e peaks that the computer weighted too heavily. 

In the tables of results, the correlation coefficient is given, as well as a confidence 

indication. These range from U,S (uncertain and/or speculative) to M (confident) to H (highly 

confident). The purpose of the foregoing discussion on mass spectral interpretation, while by no 

means complete, was to give proper context for interpretation of the correlation coefficient and 
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confidence columns in the tables of results. 

In all cases, the chromatographic peaks were examined for mass spectral purity. What is 

meant by this is that each peak was examined to determine whether the beginning, centroid, and 

end of the peak represented the mass spectrum of the same compound. When two peaks closely 

elute, there is inevitably some chemical impurity of the overlapping tails of the peak. Examining 

the peak for mass spectral purity ensures that the most reliable region will be chosen for the 

identification. 

The peaks are listed in the tables by retention time on the total ion chromatogram. This is 

determined at the peak apex. Usually, well shaped Gaussian-like peaks were obtained, consistent 

with high efficiency and high selectivity. Nearly all resolved peaks were resolved to baseline. In 

some cases, the mass spectra were determined from the spectrum taken at the peak apex, while in 

other cases, an average over just part or all of the chromatographic peak was used. This is denoted 

in the profile column in each table as a S(ingle) or A(verage). We conclude that the RP-1 sample 

used in this work is unusual because it has a surprising number of unsaturated compounds present. 

A.4. Thermal Decomposition 

 The global decomposition kinetics of RP-1 was investigated at elevated temperatures and a 

function of time. From these experiments, a global pseudo-first-order rate constant was derived 

that describes the overall decomposition of the RP-1 sample. Those results are presented in Table 

7. 

Bibliography for Chemical Characterization 
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Bruno, T. J.; Svoronos, P. D. N.  CRC handbook of basic tables for chemical analysis, 2nd. ed., 
CRC Press: Boca Raton, 2004. 
Andersen, P. C.; Bruno, T. J.  Thermal decomposition kinetics of RP-1 rocket propellant.  Ind. 
Eng. Chem. Res. 44: 1670-1676 (2005). 
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Appendix B.  Computational Characterization of Surrogate Mixture Compounds 

 The following four steps were taken to computationally characterize the compounds that 

were selected for the surrogate fuel mixture: 

(a)  Obtain equilibrium geometries from ab initio molecular orbital calculations. 
Use Hartree-Fock approximation as theory level with 6-31G* basis sets (low level 
approximation, sufficient for visualization purposes). 

 
(b)  Calculate isosurfaces for two electron density values: 

• Isosurface of electron density 0.002 e-/au3 contains approx. 98% of a 
molecule. Rendered as a mesh; 

• Isosurface of electron density 0.08 e-/au3 rendered as a solid surface to 
illustrate the core of the molecule; 

• 1 au (atomic unit) = 5.292 nm. 
 

(c)  Color-map the electrostatic potential onto the electron density isosurfaces. 
The electrostatic potential is defined as the energy of interaction of a point positive 
charge with the nuclei and electrons of a molecule.  The color-mapping indicates 
electron-rich regions in red and electron-poor regions in blue. 

 
(d)  Combining this information leads to molecular representations that comprise four 

dimensions: 
• three dimensions conveying structure, and; 
• one dimension conveying intramolecular charge distribution as a function of 

location. 
 

The still images illustrated below were created with PC Spartan for Windows, version 
‘02.* 
 
Bibliography for Computational Characterization 
 

Shusterman, G. P.; Shusterman, A. J.  Teaching chemistry with electron density models.  J. 
Chem. Educ. 74: 771-776 (1997). 
Gillespie, R. J.  Electron densities, atomic charges, and ionic, covalent, and polar bonds.  J. 
Chem. Educ. 78: 1688-1690 (2001). 
Gillespie, R. J.; Popelier, P. L. A.  Chemical bonding and molecular geometry: from Lewis to 
electron densities, Oxford University Press: New York, 2001. 

 
*Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept 
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor 
is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.  
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Figure 11.  Molecular representation of 2,2-dimethylbutane. 

 
 
 

 
Figure 12.  Molecular representation of 3-ethyl-4,4-dimethyl-2-pentene. 
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Figure 13.  Molecular representation of cyclodecene. 

 
 

 
Figure 14.  Molecular representation of cis-decaline. 
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Figure 15.  Molecular representation of 2-methylnonane. 

 
 

 
Figure 16.  Molecular representation of 2-methylnaphthalene. 
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Figure 17.  Molecular representation of decahydro-2-methylnaphthalene. 

 
 
 

 
Figure 18.  Molecular representation of 3-methyldecane. 
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Figure 19.  Molecular representation of 1-dodecene. 

 
 
 

 
Figure 20.  Molecular representation of 1,11-dodecadiene. 
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Figure 21.  Molecular representation of cyclododecane. 

 
 

 
Figure 22.  Molecular representation of heptylcyclohexane. 
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Figure 23.  Molecular representation of n-dodecane. 

 
 
 

 
Figure 24.  Molecular representation of methylcyclododecane. 
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Figure 25.  Molecular representation of 1-tridecene. 

 
 

 
Figure 26.  Molecular representation of 2,10-dimethylundecane. 
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Figure 27.  Molecular representation of 2,7,10-trimethyldodecane. 

 
 
 
 
 
 

 
Figure 28.  Molecular representation of n-hexadecane. 
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